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Abstract: Human interpretation of a large quantity of Magnetic Resonance Imaging (MRI images) 

is a tiring task and depends on the practitioner's expertise and experience. Glioma is one of the most 

common and dangerous types of primary brain tumors, and its early diagnosis could be life-saving. 

Precise and fully automatic classification of Glioma on MRI images helps physicians diagnose and 

monitor patients.  

In this work, we propose an automatic system to aid in diagnosing Glioma by classifying brain 

tumors into two categories: High-Grade Glioma (HGG) and Low-Grade Glioma (LGG). To perform 

this task, we trained three deep learning models (VGG-16, ResNet-50, and Inception-V3) on four 

brain MRI datasets (one for each MRI modality). To further improve tumor classification, non-

tumorous slices were removed from the HGG class of the selected dataset and then were separately 

used to train the three models. Evaluations on BraTS 2019 attest that T1 presents the most 

discriminative features with 0.9513, 0.907, and 0.9487 for accuracy, sensitivity, and specificity, 

respectively. The Inception-V3 model outperforms the other models with 0.9975, 0.9894, and 1 for 

accuracy, sensitivity, and specificity. Experimental results demonstrate that using the Inception-V3 

model with T1 modality can achieve good performances. 
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1. Introduction 

The brain is one of the foremost complex organs within the human body that works with billions of 

cells. Sometimes, these cells can be exposed to an uncontrolled cell division and formed an abnormal 

group of cells around or inside the brain; that’s what we call brain tumors. This kind of tumor can 

affect the traditional functionality of brain activity and cause many problems. 

Cerebral tumors are classed to benign tumors or low-grade (grade I and II) and malignant tumors 

or high-grade (grade   III and IV) according to the World Health Organization (WHO) [1]. Some 

benign brain tumors are Gliomas (low-grade Gliomas LGG), and most malignant brain tumors are 

Gliomas (high-grade Gliomas HGG). 

Due to the considerable progress in medical image acquisition devices comprises different 

modalities and processes, including Magnetic Resonance Imaging (MRI), Computed Tomography 

(CT), Positron Emission Tomography (PET) [2], among others, the medical data is quite voluminous. 

With the provision of comprehensive information and the support of multimodal MRI brain images, 

doctors can perform quantitative analyses of brain tumors such as the diameter, volume, and 

maximum amount of brain lesions, which allows the development of a diagnosis and optimal 

treatment plan for patients. 

This manual brain tumor diagnosis is often painstaking. It requires significant and tedious efforts 

on the medical expert that can be highly subjective, evaluations and prognoses can be slow [3]. This 
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focuses on the advanced deep learning algorithms that can play a pivotal role in supporting 

clinicians in detecting different forms of tumors. A commonly used deep learning method for image 

segmentation and classification is to train a Convolutional Neural Network (CNN). 

In this work, we propose an accurate and fully automatic system for classifying brain tumors into 

two classes High-Grade Glioma (HGG) and Low-Grade Glioma (LGG) from volumetric 3D 

Magnetic Resonance Imaging (MRI). The trained three well-known architectures, VGG-16, ResNet-

50, and Inception V3, on four converted datasets (T1, T1ce, T2, and FLAIR) to select the most 

informative modality which presents more specific features and information to distinguish between 

LG and HG gliomas, passing by image pre-processing and data augmentation. Furthermore, non-

tumorous slices in both HGG and LGG classes can lead to false negatives in the predicted output 

results. Therefore these slices were removed from the HGG class of the selected dataset, and then 

the three models were trained on this pre-processed dataset. Finally, we have proposed an 

algorithm that classifies the whole volume using just one modality with the accurate model. 

The remaining paper is as follows: section 2 provides a summary of the current state-of-the-art in 

automated brain tumor classification and segmentation, section 3 introduces the proposed method, 

section 4 reports and discusses experimental results performed using the BraTS 2019 database. The 

last section includes the conclusion of this work.  

2. Related work 

Nowadays, brain tumors are among the most dangerous, rapidly growing types of cancer and 

deadliest diseases. Specialists try to use different technics for detecting these tumors and localizing 

them (manually). Its performance depends on pathologists’ experience, and this did not help so 

much due to long time consumption and human errors. 

Researchers pay attention to deep learning and its great performance in image classification and 

segmentation; due to their self-learning and generalization ability using large amounts of data. 

Over the last ten years, many researchers have focused on the segmentation and classification of 

tumors on MRI images of the brain, particularly with data availability through the Brain Tumor 

Segmentation (BraTS) Challenge. Since this database's appearance in 2012, many researchers have 

contributed to the segmentation and classification of the different versions of this database. 

Among the most recent works, Gonbadi et al. [4] preprocessed two databases, IXI dataset (refers to 

normal brains) and BraTS 2017(refers to glioma brain tumors), with the aim of classifying Glioma 

Brain Tumors by extracting the brain from the skull using Brain Extraction Tool (BET). They use 

CNN model built by gathering several layers (Convolution, Max-pooling, Up-sampling, Dense) to 

extract high level and low-level features from input images and finally classify them to three 

categories: HGG, LGG or normal brain. In the end, they got a desirable accuracy of 99.18%. 

In 2019, Linmin Pei et al. [5] suggested a method for brain tumor classification which composed of 

two parts: the first use a 3D deep neural network for brain tumor segmentation on the multimodal 

magnetic resonance images, and the second part use also a 3D deep neural network that is 

developed for tumor classification using tumor segmentation results. Their paper applied their 

model on a dataset of Computational Precision Medicine: Radiology-Pathology Challenge (CPM: 

Rad-Path) for Brain Tumor Classification 2019. They obtained a dice score of 0.749 and an F1score 

of 0.764 for the validation data, while 0.596 for the dice score and 0.603  for the F1score in the test 

phase. 

In [6], the authors proposed for the tumor segmentation task a Fully Convolutional Neural Network 

(FCNN) with three-layer deep encoder-decoder architecture is used along with dense connection at 

the encoder part. They have performed pre-processing using Z score normalization on individual 

MR sequences and data augmentation by rotation, flip, elastic transformation, shear, shift, and zoom 

on MRI sequences. The network training on BraTS 2019 uses the focal loss function. Initially, the 

network trains on the whole tumor, and then its weights are transfer to substructure network 
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training. Radiomic features from the segmentation results, age, and statistical features are used to 

predict patients' overall survival using random forest regressors. They obtained a dice similarity of 

training dataset with focal loss implementation for whole tumor, tumor core, and enhancing tumor 

is 0.92, 0.90, and 0.79, respectively. The overall survival prediction method outperformed the other 

methods with 58.6% accuracy for the validation dataset on the leaderboard and the test set of BraTS 

2019 with 57.9% accuracy. 

In the work of Alqazzaz et al. [7], the authors proposed a fully convolutional neural network SegNet 

to segment the entire tumor volume and accurately segment the tumor into four sub-tumor parts. 

Their work has four main steps: a pre-processing step, in which N4ITK bias field correction is 

applied to all MRI modalities, a training step to fine-tune separately four pre-trained SegNet models 

with 3D data sets with Flair, T1, T1ce, and T2 modalities as input data, a post-processing step to 

extract four maximum feature maps from the SegNet models' score maps, for the last step these 

feature maps are combined with the pixel values of the original MRI models, and they are taken as 

the input to a dataset classifier to further classify each pixel. Experimental results demonstrate that 

this method has the potential to perform well on brain tumor segmentation. Evaluating on BraTS 

2017, F-measure scores give 0.85, 0.81, and 0.79 for whole tumor, tumor core, and enhancing tumor, 

respectively. 

In more recent work, Mzoughi et al. [8] proposed a pre-processing technique based on intensity 

normalization and adaptive contrast enhancement of MRI data, and they applied a Deep Multi-Scale 

3D Convolutional Neural Network on Brats 2018 dataset to classify Gliomas brain tumors into two 

classes: HGG and LGG. The proposed method offers an overall accuracy of 96.49% using the 

validation dataset. 

3. Methods 

In a human’s life routine, the brain functions work continued through billions of interconnected 

neurons. This is the power of the human brain and the reason to imitate its general idea of working 

by building a network of interconnected artificial neurons, to perform several tasks like data 

processing, object detection, speech recognition, language translation, and decision making.   

Some of these neural networks are built with many parameters and layers (more than five layers), 

which means we are talking about deep learning (DL). DL is the best solution for dealing with a large 

volume of data because its networks are modeled on similar human brain networks. 

Deep learning (DL) is a subfield of machine learning (ML), and artificial intelligence (AI) concerned 

with algorithms driven by the structure of the brain and mimic the way humans analyzing, collecting, 

and interpreting knowledge. It is one of the important data science elements, which makes processing 

data and creating patterns for use in decision making faster and easier [9] [10]. Its networks capable 

of learning with and without human supervision (learn from labeled and unlabeled data). 

For supervised learning tasks, deep learning methods eliminate feature engineering by translating 

the data into compact, intermediate representations akin to principal components and derive layered 

structures that remove redundancy in representation. The best-known architectures in supervised 

learning are the Convolution Neural Network (CNN). This type of neural network is trained by using 

big data and owns the capability of extracting features from data via convolutions without manual 

extraction of features. It comprises several kinds of layers: an input layer, an output layer, and hidden 

layers. The hidden layers consist of convolutional layers, ReLU layers, pooling layers, and fully 

connected layers, as is presented in Figure 1. Convolution neural network is one of the most popular 

deep learning architectures used for the classification and recognition of image, text, and sound [11] 

[12]. 
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Figure 1. High-level general CNN architecture [11] 

In this work, we have used three well-known and widely used architectures in the literature: 

VGGNet (VGG16), ResNet50, and InceptionV3. 

3.1. VGGNet: This architecture was introduced by the Visual Geometry Group (Oxford University), 

VGG [13] is a Convolutional Neural Network architecture based on AlexNet. There are two 

architectures of VGG: VGG16 & VGG19. The architecture contains: 

• Input: VGG used RGB image in a 224x224 pixel. 

• Convolutional Layers: In VGG, the convolutional layers use a very small receptive field 3x3. 

There are also 1x1 convolution filters, which can be seen as a linear transformation of the input 

channels, followed by a ReLU layer. The convolution stride is fixed to 1 pixel. 

• Max Pooling: is performed over a 2×2 pixel window. 

• Fully-Connected Layers. VGG contained three fully- connected layers. 

• Hidden Layers: All hidden layers are equipped with the non-linearity layer (ReLU). Not all 

networks contain Local Response Normalisation (LRN) due to their memory and time 

consuming and does not improve the performance. 

VGG16 contained 16 layers (13 convolutional layers + 3 fully connected layers); it is very used due to 

its uniform Architecture. In the community of extracting features from images, VGG16 is one of the 

most preferred networks. 

3.2. ResNet:  Deeper networks can provide more complex features, increasing the robustness and 

performance of the model. However, adding more layers to the network does not work by simply 

stacking layers together. Deeper neural networks are difficult to train because of vanishing and 

exploding gradient types of problems. ResNet [14], one of the common architectures of CNN, allowed 

us to train extremely deep neural networks. 

Residual Networks ‘ResNets’ are nearly similar to networks with layers of convolution, pooling, 

activation, and fully-connected layers. The basic building block for ResNets is the convolutional and 

identity blocks, which connect the output of one layer with the input of an earlier layer (skip 

connection). There are many variants of the ResNet architecture depending on the number of layers, 

such as ResNet-50, ResNet-101, ResNet-110, and ResNet-152. 

The architecture of ResNet-50 consists of 5 stages. Every ResNet architecture carries out the initial 

convolution and max-pooling using 7×7 and 3×3 kernel sizes, respectively. Each convolution block 

has three convolution layers, and each identity block also has three convolution layers. The network 

also has an Average Pooling and a fully connected layer with 1000 neurons (ImageNet class output). 

3.3. Inception network:  It is a convolutional neural network (CNN) characterized -in addition to its 

common layers- by its unique module, “Inception module”, which was designed to solve the problem 

of computational expense and overfitting, among other issues. In general Inception network is one of 

the possible solutions for computer vision problems. The popular versions of inception networks are 

as follows: 
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• Inception v1 or GoogLeNet 

• Inception v2 and Inception v3. 

• Inception v4 and Inception-ResNet. 

Inception module: 

The inception module combines convolution layers with different filter sizes (5X5, 3X3, 1X1) and max 

pooling. It has a bottleneck layer (1X1 convolutions) used for dimensionality reduction, then 

concatenate all of their output into a single output vector to form the input of the next layer. The 

object from the convolutions of different sizes is to capture details at varied scales [15]. 

Inception v3: 

Inception V3 [16] is the 3rd version of inception architectures characterized by additional 

factorization ideas. 

Inception V3 is a widely used model for image recognition; this model comprises multiple blocks, 

including convolutions, average pooling, max pooling, concatenations, dropouts, and fully connected 

layers and using the Batch norm to activate inputs also the Softmax to compute the Loss. 

In this study, we have performed a transfer learning on the VGG16, ResNet-50, and InceptionV3 by 

reusing the weights from the pre-trained models on the ImageNet dataset. 

 

4. Results and Discussions 

In this study, we are interested in the classification of brain tumors into two classes (LGG and HGG). 

We will first test three well-known architectures on the BraTS dataset to perform this task, then 

perform a dataset pre-processing, after that image classification, and finally a full volume 

classification. 

 

4.1. Used dataset: 

BraTS utilizes multi-institutional pre-operative MRI scans and primarily focuses on the segmentation 

(Task 1) of intrinsically heterogeneous (in appearance, shape, and histology) brain tumors, namely 

gliomas. Furthermore, to pinpoint this segmentation task's clinical relevance, BraTS also focuses on 

predicting overall patient survival (Task 2) and intends to classify volumes in HGG and LGG classes 

(Task 3). All BraTS multimodal scans (volumes from 335 patients: 259 HGG and 76 LGG volumes) 

are available as NIfTI files (.nii.gz) and were acquired with different clinical protocols and various 

scanners from multiple institutions. 

BraTS contains four modalities: a) native (T1) and b) post-contrast T1-weighted (T1Gd), c) T2-

weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (T2- FLAIR) volumes. 

All the imaging datasets have been segmented manually,  

One to four raters, following the same annotation protocol, and their annotations were approved by 

experienced neuro- radiologists [17].To train and test our classification model, we have selected a 

subset from the BraTS dataset and divided it into four databases, one for each modality. Each 

modality from the previous four databases contains 155 slices for one patient; in this paper, we will 

work with these slices as  PNG images. The used databases provided as a set of slices contain 2015 

High-Grade Glioma (HGG) and 2015 Low-Grade Glioma (LGG) images from the T1, T1ce, T2, and 

FLAIR modalities, respectively. The examples of High and Low-Grade Glioma obtained by T1, T1ce, 

T2, and FLAIR modalities are shown in Figures 2 and 3. 

 

Figure 2. HGG images 
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Figure 3. LGG images 

4.2. Modality selection 

 

As mentioned before, the BraTS database contains four modalities (T1, T2, T1ce, and FLAIR). This 

study aims to select the best modality that contains the best information for the classification of brain 

cancer. Such a study allows us, in the future, to acquire only the most informative modality and thus 

reduce the cost of MRI. 

 

Figure 4. Block diagram: the process of the selection of the database which allows the models to train 

well. 

As shown in Figure 4, we have converted each NIfTI (nii) volume to PNG images; thus, each volume 

gives us 155 PNG images. We have normalized and readjusted all images' sizes to use them with the 

deep learning models (224*224 for VGG16 and ResNet50 and 299*299 for InceptionV3).To augment 

the datasets, we transformed each image by rotation, shift, and horizontal flip. 

Brain tumor classification was performed using a set of CNN models developed using Keras and 

Tensorflow on a local machine with a 4820k i7 processor, 56 GB RAM, 8 GB GTX1070 GPU, and 

Windows 10 operating system. 

The classification was achieved using transfer learning on three pre-trained models on the ImageNet 

database: VGG16, ResNet50, and Inception v3; and BraTS 2019 database divided into four databases 

for each modality. All the models were trained for 50 epochs using a batch size equal to 16 with an 

SGD optimizer to minimize the loss function. 

Firstly, we applied the chosen models on the first version of our databases (4 datasets without pre-

processing) to find which modality helped them train well. The results of this training are shown in 

Table 1, where Equations (1), (2), and (3) show how to compute specificity, sensitivity, and accuracy, 

respectively: 
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Specificity = (TN) /(TN + FP )= Probability of being test negative when disease absent, (1) 

Sensitivity= (TP) /(TP + FN) = Probability of being test positive when disease present, (2) 

Accuracy = (TN + TP) /(TP + FN + TN + FP), (3) 

With: 

– True Positive (TP) is the number of positive predicted cases and they are actually positive. 

– True Negative (TN) is the number of negative predicted cases and they are also actually negative. 

– False Negative (FN) is the number of negative predicted cases while they are actually positive. 

– False Positive (FP) is the number of positive predicted cases while they are actually negative. 

 

Table 1. The calculated performances of the three models applied on four databases. 

Dataset Model Accuracy    Sensitivity Specificity 

T1CE 

Resnet50 0.9413 0.8894 0.9925 

VGG16 0.9438 0.8945 0.9925 

InceptionV3 0.9488 0.8995 0.9975 

Flair 

 

Resnet50 

 

0.9437 

 

0.8944 
 

0.9925 

VGG16 0.9474 0.8969 0.9975 

InceptionV3 0.9487 0.8994 0.9975 

 

T1 

 

Resnet50 
 

0.9513 
 

0.907 
 

0.9487 

VGG16 0.9413 0.8894 0.9925 

InceptionV3 0.95 0.9045 0.995 

T2 

 

Resnet50 
 

0.9475 

 

0.8969 

 

0.9975 

VGG16           0.9424 0.8944 0.99 

InceptionV3 0.9463 0.8969 0.995 

 

 

Table 1 summarizes the results obtained by three models learned on four databases (T1, T2, Flair, and 

T1CE without pre-processing). We noticed a difference in the performance of models in terms of 

accuracy, sensitivity, and specificity. In general, diagnostic support systems depend on metrics to 

measure how well they predict the outcomes; one of the important metrics is sensitivity. 

The higher value of sensitivity means a lower value of false negative. In other words, patients who 

are unhealthy and got predicted as healthy. For that in Brain tumors classification, this metric is 

highly important and puts the focus on it. Based on sensitivity values, we can compare the obtained 

results in training on each dataset to find the one that will give the best generalization also the best 

performance with these models, so this database is the T1 database. 

One of the major challenges in the converted volumes to 155 PNG images is non-tumorous slices in 

both HGG and LGG classes. These slices can lead to a wrong classification in the predicted output 

results. 

Secondly, we initiated training with the preceding models on the T1 pre-processed database. 

 

4.3. Brain tumor image classification 

 

We have noticed that the volume of HGG contains some black slices, which are also found in LGG 

volumes.  To avoid misclassifying these images, since they do not contain any information, we have 

removed them from the HGG database. Such an action will allow us to consider all black slices as 
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LGG and reduce the error rate. The obtained results with this pre-processing step are shown in 

Table2. The same models (VGG16, ResNet50, and Inception V3) were applied on the T1 pre-processed 

dataset (see Figure 5) to select the best model for this pre-processed modality.  

        

Figure 5. Block diagram: the process of the selection of the best model for the T1 pre-processed         

database. 

 

Table 2. The obtained results of performances of training three models on pre-processed T1 dataset. 

Dataset Model Accuracy    Sensitivity Specificity 

T1 pre-

processed 

Resnet50 0.9971 0.9876 0.9937 

VGG16 0.9954 0.9805 1 

InceptionV3 0.9975 0.9894 1 

 

 

According to the found results and the ranking of models based on their performances in Table 2, 

Inception v3 exceeds the others regarding the highest values of precision, sensitivity, and specificity. 

This overall improvement of the results can be explained by the fact that removing the black slices 

has allowed the model to focus on the images that contain relevant information and remove the 

classification error for these black images since they were previously included in both classes. 

The final objective of this work is to classify the volumes in HGG and LGG; for this, we proposed a 

solution to realize this task. 

 

4.4. Volume classification 

Algorithm 1 presents the process of classifying a total volume for one patient that used only one 

modality (T1 with the conversion from nii volume to 155 slices PNG images) from the whole volume. 

The Inception V3 model classifies each image, and at the same time, a counter is increasing if the class 

was HGG; if it is an LGG image, the counter will not be increased. The counter will be tested if at 

least one image is classified as HGG class, which means the patient has an HGG tumor; if not (counter 

=0), that means the patient has an LGG tumor. 

We have used this algorithm to validate our results on ten volumes (5 HGG and 5 LGG). We obtained 

a classification rate of 100% (all ten volumes were well classified) with an average certainty rate close 

to 95%. These results confirm that physicians can trust our application for potential use in brain 

cancer diagnosis. 

We also proposed in this work a web application to deploy our model and facilitate its use by 

physicians.          
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                             Algorithm 1: Brain Tumor classification           

                              Data: Brain MRI volume (T1 modality) MRI 

                             Result: Decision (HGG or LGG) D 

                              initialization: i=0; 
                             IMG = decomposition(MRI); 

                           for each IMG do 

                             cl = classify(IMG); 

                            if cl == ’HGG’ then 

                             i++; 

                          end 

                     end 

                           if i >0 then 

                             D = ’HGG’; 

                           else 

                             D = ’LGG’; 

                         end 

                                                                 

 

In this application (see Figure 6), the physician, after authentication, loads the T1 volume of the 

MRI. This volume will be decomposed into 155 PNG images. These images will be classified using 

our Inception V3 model. 

 

Figure 6. Our proposed web application 



WASSN 2021, 20, x; doi: FOR PEER REVIEW 10 of 11 

 

Our web application will help doctors to make decisions. Indeed, at the end of the classification, a 

label will be affected to the 3D volume and displayed with a degree of precision and a sample of the 

images that contributed to this decision.  

5. Conclusions 

Brain tumors affect the human’s life improperly because of the abnormal growth of cells inside the 

brain. It may disturb brain function and be dangerous and life-threatening. Brain tumors are grouped 

into two categories benign tumors and malignant tumors. One of the different types of medical 

imaging technologies based on a non-invasive approach is MRI that offers greater contrast images -

especially of the brain- that provides different information about the shape or function of organs in 

the patient’s body. Doctors base their decisions on this information, but unfortunately, this kind of 

data is extremely difficult to exploit quantitatively and objectively.   In this work, our proposed 

approach aims to help the doctor by classifying MRI volumes into two classes HGG and LGG.  First, 

we have performed a decomposition of each modality (T1, T2, T1ce, and Flair) of the MRI volumes 

to 155 PNG images. These images were used to train and test three well-known CNN architectures 

in the state-of-the-art.  This experiment aimed to choose the best modality in the classification of 

brain tumors. The results show that the T1 gives the best performances. We have noticed that the 

LGG and HGG volumes contain black slices, leading to misclassification. To solve this problem, we 

have proposed to delete these images from the HGG dataset. This pre-processing step allowed the 

model to increase the accuracy rate using the Inception V3, and it obtains 0.9975, 0.9894, and 1 for the 

accuracy, sensitivity, and specificity, respectively. Finally, we have proposed an algorithm that 

classifies the whole volume. Based on the obtained results, we can conclude that such a system will 

be of great use to radiologists in helping to diagnose brain cancer. 
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