
                                                                      ISSN: 2766 - 7715 

 

WASSN 2018 http://worldascience.com/WASSN/index.php 

Article 

Enhanced Version of GOST Cryptosystem for 

Lightweight Applications 
Bassam. W. Aboshosha1,*, Mohamed M. Dessouky2, Rabie. A. Ramadan3 , Ayman El-Sayed2 and 

Fatma H. Galal2 

1Department of Computer Engineering, Higher Institute of Engineering, Elshorouk Academy, Cairo , Egypt. 
2Department of Computer Engineering, Menofia University, Menoufia, Egypt. 
3Computer Engineering Dept. Cairo University, Cairo, Egypt and University of Hail, Hail , KSA.  

*Correspondence: bassam.ahmed32@gmail.com 

Received: 05.05.2018; Accepted: 07.06.2018; Published: 15.06.2018 

Abstract: Recently, constraint devices applications are widely extended in different fields. These 

devices are connected to serve billions of users. A well-known example of these structures is the 

Internet of Things (IoT). Due to the spreading of this technology, new security risks threatening the 

secrecy and privacy are generated. Therefore, confidentiality and protection of data 

communication must be concerned. A lightweight cryptographic algorithm is one of the most 

suitable solutions to save information in such environments. In this paper, we propose a rigid, 

lightweight, and energy-efficient security approach called E-GOST for the IoT systems. 

Furthermore, a new substitution box is suggested to be strong and immune box against the various 

types of attacks especially the side channel attack. E-GOST relies on the traditional GOST 

algorithm. 

Keywords: Constraint devices; lightweight cryptographic; IoT; side channel attack; S-box; bit slice 

implementation. 

1. Introduction 

The revolution of Information and Communication Technology (ICT) is mainly based on 

constrained resources devices. These devices suffer from limited resources such as CPU capabilities, 

bandwidth, memory (ROM and RAM), and battery lifespan. There are many application areas in 

which such devices are cooperating to carry out specific tasks. One of the major application areas is 

the Internet of Things (IoT) [1]. IoT allows people to connect with anyone or anything at any time 

from anywhere. Under the concept of IoT, not only conventional types terminals including PCs, 

smartphones, and tablet PCs, but also automobiles, electrical home appliances, robots, and even 

facilities themselves will be connected to the Internet. These terminals are spreading throughout our 

living spaces and contributing to building the ubiquitous network described above. Under these 

circumstances, there is a definite need for security functions to protect personal information and 

privacy and guarantee the integrity of information exchanged on the network [2]. 

However, since providing such functions is not the main purpose of IoT services, the functions 

should not hinder the operations for the users. Moreover, it is unlikely that all IoT devices utilize 

high-performance CPUs. It should be assumed that some devices have poor computing resources 

with throughput and memory capacity inferior to conventional ICT terminals and battery-power 

restrictions on operating time. When the CPU and memory must be shared by many applications, 

cryptography with less CPU cost and memory consumption is sometimes demanded [3]. One 

example is the cryptography used in smartphones, tablet PCs, and smart TVs (high-performance 

television with an Internet connection). Furthermore, some devices that operate on batteries expect a 

cryptographic algorithm that consumes less power. For example, environment-measuring devices 
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are often installed at locations where no utility power is available. Medical implant devices rely only 

on battery power and are required to be as small as possible to lessen their effects on the human 

body. Lightweight cryptography is expected to serve these applications [4]. 

Lightweight Cryptography has become one of the hot research topics. It is a relatively new 

science that is mainly sub-field from cryptography. It concerns new designs, adaptions or efficient 

implementations of cryptographic primitives and protocols. Due to the wide spreading of limited 

resources devices and its applications besides very strong attacker cryptanalysis techniques and that 

the nodes deployment in the harsh environment lead to new attacks —especially the possibility of 

physical attacks—there is a necessary need for lightweight security solutions that are tailored to the 

everywhere computing paradigm [5]. Lightweight cryptography is the part of cryptography using 

the most basic and simple computational operations to provide security systems. Yet, combining 

these operations to achieve a rigid and robust cryptosystem is a challenge that remains to be solved. 

Consequently, the research and development of lightweight cryptography for the implementation 

on devices with limited resources has been increased, and many cryptosystems have been proposed 

in research manuscripts [6]. In this paper, we follow the approach of adapting the design and the 

implementation of both hardware and software of the existing standardized block ciphers. A new 

version of GOST algorithm is proposed which called “E-GOST”. 

GOST block cipher is a Soviet and Russian government standard. It is the basis of most secure 

information systems in Russia. It has a simple structure suitable for compact hardware 

implementations. It has been classified as one of the ultra-lightweight block ciphers. Therefore, it is a 

target for the constrained environments. The immunity of any block cipher against several attacks 

depends basically on the rigidity of Substitution boxes (S-boxes) because it is the main non-linear 

component of a block cipher. The design and characteristics of S-boxes of a block cipher are central 

measures of resistance against all crypt-analytical techniques. Therefore, the analysis of an S-box is 

very important. In this paper, a discussion and analysis of the S-boxes of the Central Bank of the 

Russian Federation GOST version are introduced. Furthermore, a new substitution box is suggested 

as more strong, rigid, and immune boxes against the various attacks. 

The paper is organized as follows: In the next section, we are going to introduce the GOST 

encryption algorithm briefly. Since the S-boxes was not specified in the original algorithm, this paper 

discusses the selection of an appropriate approach for S-boxes selection in subsequent Section 3. We 

also compare the linear and differential properties of the S-boxes as used by the Central Bank of the 

Russian Federation and the proposed S-box. The bit-slice implementation of the proposed S-box is 

given in section 4. The hardware implementation result of the proposed approach is presented in 

Section 5. Finally, this paper is concluded in Section 6. 

2. GOST Encryption Structure  

GOST algorithm is a symmetric block cipher, which conforms to Feistel scheme. 64-bit blocks of 

data are submitted to the input and converted into 64-bit blocks of encrypted data by 256-bit key [7]. 

Function F is applied in each round on the right side of plaintext messages ;  it converts   the 

plaintext with three cryptographic operations:  

Adding data and subkey modulo 232. 

Substitution of data using secret S-boxes. 

Left cyclic shift by 11 positions. 
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Output of F-function is added modulo 2 to the left part of the plaintext, then right and left sides 

are swapped for next round. The overall process of the round function can be summarized in the 

formal notation as the following: 

𝑳 𝒊+𝟏  =  𝑹𝒊 (1) 

𝑹 𝒊+𝟏 =  𝑳𝒊  (𝑺(𝑲𝒊  +  𝑹𝒊 𝒎𝒐𝒅 𝟐𝟑𝟐)

≪ 𝟏𝟏) (2) 

where  denotes a bitwise exclusive OR and << a a rotation to the left by a bits. 

The algorithm has 32 rounds. In the last round of encryption right and left parts are not 

swapped. The overall dataflow diagram of GOST is shown in Figure 1. GOST uses 8 S-boxes, which 

convert 4-bit input to 4-bit output. GOST has no predefined S-boxes unlike most encryption 

algorithms and any values can be used for them. The Secret Key is a series of eight 32-bit phrases: 

K1, K2, K3, K4, K5, K6, K7 and K8. One of these 32-bit phrases is used as a round subkey in every 

encryption round. When round subkey is calculated, the following principle is used:  

Table 1. Key schedule in GOST 

Rounds 1           …         8 9            …        16 

Keys k1 k2 k3 k4 k5 k6 k7 k8 k1 k2 k3 k4 k5 k6 k7 k8 

Rounds 17          …         24 25         …          32 

Keys k1 k2 k3 k4 k5 k6 k7 k8 k8 k7 k6 k5 k4 k3 k2 k1 

from round 1 to round 24 the order is straight; from round 25 to round 32 reversed order is used [7]. 

The S-boxes accept a four-bit input and produce a four-bit output. The S-box substitution in the 

round function consists of eight 4 × 4 S-boxes. The S-boxes are implementation-dependent – the 

same S-boxes must be used by parties wishing to secure their communications using GOST. The 

S-boxes can be kept confidential for additional safety. In the original standard where GOST was 

specified, no S-boxes were given, but the S-boxes used at the Central Bank of Russian Federation is 

published as a powerful example as shown in table 2.  

Table 2.  S-boxes of the Central Bank of Russian Federation 

x 0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F 

S1 (x) 4   A   9   2   D   8   0   E   6   B   1   C   7   F   5   3 

S2 (x) E   B   4   C   6   D   F   A   2   3   8   1   0   7   5   9 

S3 (x) 5   8   1   D   A   3   4   2   E   F   C   7   6   0   9   B 

https://en.wikipedia.org/wiki/Central_Bank_of_Russia
https://en.wikipedia.org/wiki/Central_Bank_of_Russia
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S4 (x) 7   D   A   1   0   8   9   F   E   4   6   C   B   2   5   3 

S5 (x) 6  C   7   1   5   F   D   8   4   A   9   E   0   3   B   2 

S6 (x) 4   B   A   0   7   2   1   D   3   6   8   5   9   C   F   E 

S7 (x) D   B   4   1   3   F   5   9   0   A   E   7   6   8   2   C 

S8 (x) 1   F   D   0   5   7   A   4   9   2   3   E   6   B   8   C 

 

Figure 1.  Feistel structure of the traditional GOST algorithm 

3. The Properties of S-Boxes 

The GOST standard does not specify a set of S-boxes. In fact, one aim of the designers was to 

have an encryption algorithm with a flexible security level. 

Schneier [8] states that the Central Bank of Russian Federation has been using the S-boxes 

described in Table 2. This set of S-boxes serves as an instance of GOST, but the suitable selection of 

S-boxes is a design decision according to the standard. It is clear that the selection of the S-boxes has 

a significant influence on the cryptographic strength of the cipher, thus a careful selection is crucial. 

Please note that the standard does neither specify if the S-boxes used shall be different. Thus, with a 

small area footprint in mind, we opt for selecting one S-box that is used eight times in parallel which 

shown in table 3 – a similar approach as used in DESL/DESXL [9]. While DESL/DESXL lead to a 

slightly modified standard algorithm.  

Table 3. The proposed S-box in E-GOST 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F 

S(x) 8 7 3 C D B 4 1 6 A 9 F 0 5 E 2 
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The linear and the differential properties are our main concern here and use the classification of 

4-bit S-boxes published in [10] as a guideline for the selection of an appropriate S-box. In fact we 

have chosen to use our proposed S-box, since it has a strong immunity against both linear and 

differential cryptanalysis and has a low area footprint of 4-bit S-boxes beside the efficient bit-slice 

implementation especially on constraints microprocessors like x86 architectures. To verify the 

resistance of the algorithm to differential and linear cryptanalysis [11, 12] and other related attacks, it 

is necessary to calculate the Maximum Difference Propagation Probability (DPPmax) and the 

Maximum Input-Output Correlation (IOCmax) as well as the robustness of the S-box. The 

calculation of both DPPmax and IOCmax are achieved by first building the XOR distribution and 

Linear Approximation Tables respectively. 

3.1. Linear Approximation Table (LAT) 

For a given s-box constructed from a mapping 𝑓 ∶ 𝑍2
𝑛   𝑍2

𝑚, the linear approximation table 

entry 𝐿𝐴𝑇(𝑎 ∙ 𝑏) is defined as: 

𝐿𝐴𝑇(𝑎 ∙ 𝑏) = # {𝑥 𝜖 𝑍2
𝑛 |𝑎 ∙ 𝑥 = 𝑏 ∙ 𝑓(𝑥)}  

− 2𝑛−1 
(3) 

where 𝑎 𝜖 𝑍2
𝑛 , and 𝑏 𝜖 {𝑍2

𝑚 }/0  , and  𝑎 ∙ 𝑥 denotes the inner product of the vectors a and x 

evaluated over Z2. The linear approximation entry with the maximum absolute values is denoted by 

Lmax. 

3.2. XOR Distribution Table 

For a given s-box constructed from a mapping 𝑓 ∶ 𝑍2
𝑛   𝑍2

𝑚, The XOR table entry 𝑁∆𝑥∆𝑦  is 

defined as: 

𝑵∆𝒙∆𝒚

=  # {𝒙 𝝐 𝒁𝟐
𝒏 |𝒇(𝒙 ⊕ ∆𝒙) ⊕ 𝒇(𝒙) =  ∆𝒚} (4) 

where ∆𝑥𝜖 𝑍2
𝑛 , and ∆𝑦 𝜖 {𝑍2

𝑚 }. The entry Noo = 2n, is not taken into consideration as it does not 

have any cryptographic significance. For ∆x ≠ 0, the maximum entry in the XOR table is denoted by 

Dmax. Table 3 and Table 4 show the linear approximation and the differential distribution of the 

Proposed S-box (SP) respectively. Also, appendix A and appendix B show the differential 

distribution and the linear approximation of the S-boxes used by the Central Bank of Russian 

Federation (S1 to S8) respectively. 

From Table 5, where we summarized the linear and differential characteristics of these S-boxes, 

it becomes clear that the proposed S-box is stronger in both   linear and differential cryptanalysis 

due to the strict design criteria. Therefore, in the following, we will also consider a GOST 

implementation that uses eight times the proposed S-box. We will refer to this variant with the term 

E-GOST while GOST-FB denotes the GOST variant that uses the S-boxes as used by the Central Bank 

of Russian Federation. 

Table 3.  Linear approximation table of the proposed S-box 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 2 2 0 0 0 2 2 2 2 0 4 4 2 2 0 

0 0 0 0 0 0 4 0 0 0 4 4 0 0 4 0 

0 0 2 0 2 2 0 2 2 4 2 2 0 2 0 4 

0 2 2 0 0 4 2 2 2 2 0 0 0 2 2 4 

0 2 2 0 0 0 2 2 2 2 4 0 4 2 2 0 

0 2 0 4 2 2 2 0 0 2 2 2 4 0 2 0 

0 0 0 0 0 0 4 0 4 0 0 0 0 4 4 0 

0 4 2 0 2 2 0 2 2 0 2 2 0 2 0 4 

0 2 2 0 4 0 2 2 2 2 0 0 0 2 2 4 

0 2 0 0 2 2 2 4 0 2 2 2 0 4 2 0 

0 2 0 4 2 2 2 0 0 2 2 2 4 0 2 0 

0 0 4 0 4 4 0 4 0 0 0 0 0 0 0 0 

0 0 2 4 2 2 0 2 2 4 2 2 0 2 0 0 

0 2 4 0 2 2 2 0 4 2 2 2 0 0 2 0 

0 4 2 4 2 2 0 2 2 0 2 2 0 2 0 0 

3.3. XOR Distribution Table 

For a given s-box constructed from a mapping 𝒇 ∶ 𝒁𝟐
𝒏  𝒁𝟐

𝒎, The XOR table entry 

𝑁∆𝑥∆𝑦 is defined as: 

𝑁∆𝑥∆𝑦

=  # {𝑥 𝜖 𝑍2
𝑛 |𝑓(𝑥 ⊕ ∆𝑥) ⊕ 𝑓(𝑥) =  ∆𝑦} 

(4) 

where ∆𝑥𝜖 𝑍2
𝑛 , and ∆𝑦 𝜖 {𝑍2

𝑚 }. The entry Noo = 2n, is not taken into consideration as it 

does not have any cryptographic significance. For ∆x ≠ 0, the maximum entry in the XOR 

table is denoted by Dmax. Table 3 and Table 4 show the linear approximation and the 
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differential distribution of the Proposed S-box (SP) respectively. Also, appendix A and 

appendix B show the differential distribution and the linear approximation of the S-boxes used 

by the Central Bank of Russian Federation (S1 to S8), respectively.  

From Table 5, where we summarize the linear and differential characteristics of these 

S-boxes, it becomes clear that the proposed S-box is stronger both with regard to linear and 

differential cryptanalysis due to the strict design criteria. Therefore in the following we will 

also consider a GOST implementation that uses eight times the proposed S-box. We will refer 

to this variant with the term E-GOST while GOST-FB denotes the GOST variant that uses the 

S-boxes as used by the Central Bank of Russian Federation. 

Table 4. XOR distribution table of the proposed S-box 

 

Table 5. Summary of the non-linear properties of GOST block cipher S-boxes and the 

proposed S-box 

S - Box of Russian Central Bank Federation (GOST-FB) 

S-Box Dmax(XOR Dist. Table) Lmax(Linear App. Table) 

S1 6 ±4 

S2 6 ±6 

S3 6 ±6 

S4 6 ±6 

S5 4 6 

S6 6 6 

S7 8 ±6 
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S8 8 ±6 

The Proposed S - Box (E-GOST) 

S8 4 ±4 

3.4. Robustness of E-GOST S-boxes  

Seberry [13] defines an expression for the robustness, R, of an S-box. A measure of an 

S-box's resistance to differential cryptanalysis is robustness (R). Robustness is based on the 

Differential Distribution Table (DDT) two functions. The first is the number of nonzero 

components, N, in the DDT's first column (except the first component). These denote cases 

when an input change leads to no output change. Such events are a weakness because they 

decrease an algorithm's complexity and play a major role in differential cryptanalysis. The 

other feature is the largest value found in the DDT, L, other than the top left element. The 

robustness is given by equation 5: 

𝑅 = (1 − 𝑁/2𝑛)(1 – 𝐿/2𝑛) (5) 

where n is the number of input bits. The higher R is, the more difficult differential 

cryptanalysis is to perform. Table 6 shows that the proposed S-box has the highest value of R, 

and then the proposed S-box (SP) can be more resistance to differential cryptanalysis.  

Table 6.  Robustness of GOST block cipher S-boxes 

S - Boxes of Russian Central Bank Federation 

S-Box nNZ Dmax RS 

S1 0 6 0.625 

S2 0 6 0.625 

S3 0 6 0.625 

S4 0 6 0.625 

S5 0 4 0.75 

S6 0 6 0.625 

S7 0 8 0.5 

S8 0 8 0.5 

S - Boxes of Most Recent Version 

S8 0 4 0.75 
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4. The Bit-Slice Implementation of The Proposed S-Box 

Lightweight block ciphers are designed so as to fit into very constrained environments. 

They generally aim to be implemented efficiently on a large variety of platforms, but usually 

not really with software performance in mind. For classical lightweight applications where 

many constrained devices communicate with a server, it is also crucial that the cipher has 

good software performance on the server side. In this paper, we consider a context where we 

have very limited processing resources and throughput requirements. We suggest low-cost 

encryption schemes (i.e. tiny code size and memory) for processors with a restricted set of 

instructions (i.e. AND, OR, XOR gates, word rotation and modular addition). Recent work 

has shown that bit-slice implementations applied to different cryptographic algorithms led to 

very good software speeds, thus making lightweight ciphers interesting for cloud applications. 

In this article, we introduce a software implementation of lightweight ciphers on x86 

architectures, with a special focus GOST algorithm. We apply to our portfolio of primitives 

the bit slice implementation trick for 4-bit SBox, which gives good performance, extra 

side-channels protection, and is quite fit for many lightweight applications. 

The x86 processors, which can be found in nearly every personal computer, have some 

clearly distinguishing features when compared to more modern architectures. One of these is 

the small number of registers, only 8. Another is the instruction set, where almost all 

instructions always modify one of their input registers. If those essential properties of the x86 

processors have been ignored, thus the result is a high so-called ’register pressure’, meaning 

compilers must put temporary variables in memory, issuing load and store instructions in 

addition to the actual computation. When required, the compiler also receives the copying 

values task.  

Cryptographic algorithm implementation is typically optimized for one or more 

requirements such as latency, performance, power consumption, memory consumption, etc., 

but also criteria such as the expense of adding masking countermeasures to safeguard against 

side-channel attacks. It is worthwhile to spend time on this optimization, as the 

implementations are typically used many times. It is usually a hard problem to find an 

implementation that is theoretically minimal with respect to the criteria, e.g., general circuit 



WASSN 2018 10 of 17 

 

minimization is complete [14]. However, for small functions this is still possible, using, for 

instance, bit slice solvers. Especially for building blocks that can be used in multiple 

cryptographic algorithms, such as S-boxes, it is useful to look at methods for finding minimal 

implementations with respect to some given criteria. we first discuss the problem of finding 

minimal implementations of the nonlinear functions. We give a sequence method “set of 

routines” for finding the shortest program to implement the proposed S-boxes. 

If we restrict our S-box implementations to the AND; OR; MOVE; XOR; NOT 

operations, we only need to consider the number of ANDs and ORs. Optimizing for this goal 

is useful in the case of protecting against side- channel attacks using random masks, where 

nonlinear gates are typically more expensive to mask. There are also applications in 

multi-party computation and fully homomorphic encryption, where the cost of nonlinear 

operations is even more significant. Tiago et al.[15] presents another job where bit-sliced 

application and masking technique are used to avoid side channel assaults. Constant execution 

time can be accomplished in bit-sliced execution that helps safeguard against timing attacks. 

We present a method for finding efficient instruction sequences for the proposed S-box. There 

are only 8 registers for popular x86 processors, of which even fewer are accessible for 

computations. Also, the instructions are damaging, replacing one output input. Alternative 

variants of the S-box guidelines are provided, which require only 5 registers and use 

parallelism as well.  

Another aspect is the encryption speed they allow in different applications. The goal of 

this work has been to find ways to improve the execution speed of the GOST algorithm on the 

x86 processors, including use of two-way parallel execution. 

The 4-bit S-boxes are 16-element permutations and are performed through simple 

Boolean operations in a bit parallel (also known as bit slice) style. A 4-digit binary number 

can represent each number from 0 to 15, so these features map 4 input bits to 4 output bits. 

Now, we need some way to transform any 4 input bits into the corresponding 4 output bits 

using only those instructions available in the x86 instruction set, and in a bit parallel way. 

We’ll propose the S-box represented in table 3 as an efficient implantation: 

Now rewrite x and S (x) in binary: 
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Each column in this table contains the bits of some value for x, as well as the bits of the 

corresponding S(x). The set of all columns contains all possible values for x. The number of 

columns is thus determined by the number of possible inputs and it is not related to the word 

length of any processor. 

If we find a way of combining the xi rows by Boolean operations so that we get the S,i 

rows, then applying those operations to the bits of an input value x is equivalent to looking up 

S(x). To see how this is done, we will look at the execution of an instruction sequence for S2. 

The x86 instructions usable for the S-boxes are these: 

Instruction Effect 
C 

expression 

and a, b a := a · b a &= b 

or a,b a := a + b a |= b 

xor a,b a := a  b a ˆ= b 

not a a := a  1 a = ˜a 

mov a, b a := b a = b 

Suppose we have 5 registers, named r0, . . . , r4, available for our computations, and 4 of them 

initially contain our 4 input bits (ri contains xi, 0  i 3). As r4 is not an input register, we just 

ignore its previous contents. Thus, we have this initial state: 

R4                 

R3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

R2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

R1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

R0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

The instruction sequence found by the search program (with two-way parallelism shown) is 

this: 
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mov r4, r1 and r1, r3 

xor r1, r2 xor r3, r0 

xor r3, r1 or r2, r4 

xor r2, r0 xor r4, r3 

mov r0, r2 or r2, r4 

xor r2, r1 and r1, r0 

xor r4, r1 xor r0, r2 

xor r0, r4 not r4 

Executing the first line of instructions makes the modifications r4 := r1; r1 := r1 · r3, giving us 

this new state: 

R4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

R3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

R2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

R1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 

R0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Next, we perform r1 := r1  r2; r3 := r3  r0. 

R4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

R3 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

R2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

R1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 

R0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Now things get more interesting. Notice the values in the r3 row after r3 := r3  r1; r2 := r2 + 

r4. 

R4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

R3 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 

R2 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 

R1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 

R0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

r3 is now the same as S2(x), one of our wanted output bits. Executing the next three lines of 

instruction pairs, we reach this state: 

R4 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 

R3 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 

R2 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 

R1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 

R0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 
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Now r2 is the same as S1(x), The next two lines complete the work: 

R4 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 

R3 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 

R2 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 

R1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 

R0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 

Now after completing the work, note that the values in the registers are the same as S(x) 

according to the following manner: 

Register Equivalent 

R4 S3 

R3 S2 

R2 S1 

R0 S0 

5. Hardware Implementations 

There are different ways for implementing a cryptographic circuit. This paper considers three 

basic implementation architectures, unrolled, round, and serial as indicated in Figure 2. Efficient 

implementation has become one of the most challenges in different applications especially, 

constraint resources devices applications. Therefore, the following metrics have to be taken in 

consideration if the encryption schemes are implemented in hardware. 

 Low gate area which is measured in Gate Equivalents (GE), both memory consumption and 

implementation size reflect the gate area. 

 High throughput; reflects the encryption process speed. It measured in bits or bytes per second,  

 Low latency, which defines the time taken to obtain the output of the circuit once its input has 

been set. It measured in seconds. 

 Low power consumption; indicates the amount of power needed to use the circuit. It measured 

in Watts. 

These four criteria compete with one another. For instance, a low latency tends to imply a higher 

area. Small implementation is also by far slow while the most energy efficient is the largest.  

The optimal trade-off between these quantities is very much context dependent. In fact, 

primitives have been proposed that have been optimized for different corners of the design space: 

some allow a very low latency implementation, others a very small one (in terms of GE) which is 

concerned here, etc. Regardless of the exact platform, a given primitive may be implemented using 

different approach.  

In the case of the hardware implementation of 12 algorithms; Two types of implementation were 

evaluated: one performing only the encryption operation and the other performing both encryption 

and decryption with the same module in which the operations are switched by a control signal. 

Table7 compares the implemented circuit sizes in terms of gate equivariant (area) excluding the 

interface circuits.  

Let us consider unrolled implementation, the different block ciphers gave low latency however 

much larger than the requirements of the lightweight cryptography. Such unrolled implementations 

are popular when a low-latency is targeted as those allow a full evaluation in one clock cycle. The 

downside is then the far larger size of the circuit. Consequentially, serialized and round-based 

implementations are recommended for E-GOST lightweight hardware implementation. We restrict 
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ourselves to serialized implementation, since it has minimal number of gate equivalents (GE). Beside 

a very small footprint implementation in hardware E-GOST has a rather high throughput giving 

good energy-per-bit. Due to the simplicity of the circuit logic involved, serialized implementations 

allow a far higher clock frequency so they may not be as slow as one might fear. Still, their main 

advantage is a much smaller circuit. 

Figure 2. Basic Implementation Methods (3-a) unrolled, (3-b) round and (3-c) serial implementation. 

 

5.1 Serial Implementation of E-Gost 

Figure 3 shows fixed key lightweight hardware architecture of E-GOST with single S-box from 

[16]. It operates on 4-bit data path chunks; however, the permutation process is considered the most 

implementation constraint (challenge). Where the rotation by 11-bit position can’t applicable on 4-bit 

chunks, but instead we should to operate on the whole state. The proposed architecture takes 8 clock 

cycles to process all chunks of the state and to perform one round of E-GOST. 

Then the content of the registers is swapped as it is required by the Feistel structure within one 

clock cycle, i.e. it operates on the whole state. This clock cycle is used to perform the 11-bit rotation, 

but in this architecture both halves of the state have XORed already. the right halves in the previous 

clock cycles have to be shifted by 11-bit positions to the right, before storing it as the new left halve. 

Then when the XOR sum of both halves is rotated by 11-bit positions to the left, the final step of one 

round of GOST is performed. In short, the following operations are carried out when the content of 

the registers is swapped: 

𝐿 𝑖+1  =  𝑅𝑖 ≪ 11 (1) 

𝑅 𝑖+1 = (𝐿𝑖   𝑆(𝐾𝑖  + 𝑅𝑖  𝑚𝑜𝑑 232))

≪ 11 
(2) 

On the other hand, the key schedule of GOST is very simple: in every round a 32-bit chunk of the 

256-bit key is used as the round key and for the last eight rounds the order is swapped (see Table 1). 

Thus, apart from a 32-bit wide 8- to-1 MUX to select the right round key there is only very little logic 

required for a round-based implementation. For a serialized implementation we need an additional 

4-bit wide 8-to-1 MUX to select the right chunk of the round key. If the application requires the key 

to be updated, 256 additional flip-flops are required for storage. However, especially in passive 

RFID-tag scenarios it is very unlikely that the key needs to be changed. Therefore, the main target for 

our implementations are applications with a fixed key. Then only a small amount of (cheap) tie cells 

are required to hard-wire the key. 

Table7. comparison of the implemented circuit sizes of 12 algorithms in terms of gate 

equivariant excluding the interface circuits. 

Algorithm 

Encryption Circuit Size without Interface (kgate) 

Unr

olled 

Enc 

Unr

olled 

Enc/

Dec 

R

ound 

En

c 

Rou

nd 

Enc

/Dec 

S

erial 

E

nc 

Seri

al 

Enc

/Dec 

(a) 

(b) 

(c) 
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AES(table) (128/128) 
109.

7 

205.

6 
--- --- 

--

- 
--- 

AES(comp) (128/128) 76.1 
141.

5 

12

.4 
15.6 

3

.2 
4.1 

Camellia(comp) 

(128/128) 
57.4 60.6 

8.

0 
9.0 

4

.1 
4.3 

CLEFIA 

(128/128) 
71.5 71.5 

7.

3 
7.1 

3

.6 
3.8 

SIMON 

(128/128) 
60.4 71.3 

4.

3 
5.0 

2

.1 
2.9 

SPECK 

(128/128) 
41.6 66.4 

4.

4 
6.8 

2

.2 
3.1 

Midori 

(128/128) 
31.8 52.9 

4.

3 
5.6 

2

.2 
2.6 

TDES 

(64/168) 
52.8 53.8 

5.

3 
7.9 

--

- 
--- 

LED 

(64/128) 
71.9 

212.

9 

3.

8 
4.7 

3

.0 
4.3 

PRINCE 

(128/128) 
7.8 8.1 

2.

7 
3.0 

1

.6 
1.8 

SIMON 

(64/128) 
21.8 25.4 

3.

2 
3.9 

1

.7 
2.5 

SPECK 

(64/128) 
17.4 27.8 

3.

2 
4.6 

1

.8 
2.7 

Midori 

(64/128) 
10.2 18.5 

2.

6 
3.2 

1

.5 
1.7 

SIMON 

(64/96) 
18.4 21.9 

2.

7 
3.2 

1

.4 
2.0 

SPECK 

(64/96) 
16.8 26.8 

2.

8 
4.1 

1

.6 
2.3 

PRESENT 

(64/80) 
22.0 42.1 

2.

2 
2.9 

2

.0 
2.8 

PICCOLO 

(64/80) 
17.4 21.1 

1.

6 
1.9 

1

.1 
1.3 

TWINE 

(64/80) 
17.8 23.9 

2.

7 
2.9 

2

.4 
2.5 

SIMON 

(32/64) 
7.8 9.2 

1.

7 
2.1 

1

.0 
1.4 

SPECK 

(32/64) 
7.0 11.2 

1.

7 
2.4 

1

.1 
1.6 

 

Below we give such a breakdown of both GOST variants. Recall that GOST-FB refers to the 

variant that uses the set of S-boxes as used by the Central Bank of Russian Federation while E-GOST 

refers to the variant that uses the proposed S-box eight times. 

The sBox Layer module in the serialized E-GOST is by far the smallest, because we only need to 

implement one S-box, while GOST-FB needs all 8 S-boxes and an additional MUX. 
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Figure 3. Architecture of a lightweight hardware architecture with a 4-bit data path for GOST. 

As one can see, a serialized implementation leads to smaller area requirements, mostly due to a 

scaled down key addition module (saves 230 GE) and XOR gates (saves 70 GE). However, the 

serialized architecture also introduces some area overhead, because additional MUXes are required: 

one for the state register (15 GE) and one to select the right chunk of the round key (49 GE). If the 

GOST variant uses different S-boxes such as GOST-FB, but not GOST-PS, another MUX is required 

to select the correct S-box (52 GE). Furthermore, an NLFSR (23 GE) is required as a serial counter and 

the key addition requires a flip-flop to store the carry bit. The round counter is smaller in the 

round-based architectures, which we believe is because in the serialized architecture gated registers 

are required, but not in the round-based. Finally, table 7 states that the smallest footprint 

implementation in hardware of the algorithms is 1.0 kGE, however, E-GOST has a smaller footprint 

implementation. E-GOST requires 0.651 KGE. 

6. Conclusions 

We proposed a new version of GOST called E-GOST that uses a new cryptographically strong 

proposed S-box since the S-boxes are not specified in the original standard; we discuss the selection 

of an appropriate approach for the selection of S-boxes. We introduced an efficient bit-slice software 

implementation on x86 processors architecture as well. We also compare the linear and differential 

properties of the S-boxes as used by the Central Bank of Russian Federation and the proposed S-box. 

Finally, we show that E-GOST has the smallest footprint implementation in hardware. 
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