
 ISSN: 2766 - 7715

WASSN 2018 http://worldascience.com/WASSN/index.php

Article

Enhanced Version of GOST Cryptosystem for

Lightweight Applications
Bassam. W. Aboshosha1,*, Mohamed M. Dessouky2, Rabie. A. Ramadan3 , Ayman El-Sayed2 and

Fatma H. Galal2

1Department of Computer Engineering, Higher Institute of Engineering, Elshorouk Academy, Cairo , Egypt.
2Department of Computer Engineering, Menofia University, Menoufia, Egypt.
3Computer Engineering Dept. Cairo University, Cairo, Egypt and University of Hail, Hail , KSA.

*Correspondence: bassam.ahmed32@gmail.com

Received: 05.05.2018; Accepted: 07.06.2018; Published: 15.06.2018

Abstract: Recently, constraint devices applications are widely extended in different fields. These

devices are connected to serve billions of users. A well-known example of these structures is the

Internet of Things (IoT). Due to the spreading of this technology, new security risks threatening the

secrecy and privacy are generated. Therefore, confidentiality and protection of data

communication must be concerned. A lightweight cryptographic algorithm is one of the most

suitable solutions to save information in such environments. In this paper, we propose a rigid,

lightweight, and energy-efficient security approach called E-GOST for the IoT systems.

Furthermore, a new substitution box is suggested to be strong and immune box against the various

types of attacks especially the side channel attack. E-GOST relies on the traditional GOST

algorithm.

Keywords: Constraint devices; lightweight cryptographic; IoT; side channel attack; S-box; bit slice

implementation.

1. Introduction

The revolution of Information and Communication Technology (ICT) is mainly based on

constrained resources devices. These devices suffer from limited resources such as CPU capabilities,

bandwidth, memory (ROM and RAM), and battery lifespan. There are many application areas in

which such devices are cooperating to carry out specific tasks. One of the major application areas is

the Internet of Things (IoT) [1]. IoT allows people to connect with anyone or anything at any time

from anywhere. Under the concept of IoT, not only conventional types terminals including PCs,

smartphones, and tablet PCs, but also automobiles, electrical home appliances, robots, and even

facilities themselves will be connected to the Internet. These terminals are spreading throughout our

living spaces and contributing to building the ubiquitous network described above. Under these

circumstances, there is a definite need for security functions to protect personal information and

privacy and guarantee the integrity of information exchanged on the network [2].

However, since providing such functions is not the main purpose of IoT services, the functions

should not hinder the operations for the users. Moreover, it is unlikely that all IoT devices utilize

high-performance CPUs. It should be assumed that some devices have poor computing resources

with throughput and memory capacity inferior to conventional ICT terminals and battery-power

restrictions on operating time. When the CPU and memory must be shared by many applications,

cryptography with less CPU cost and memory consumption is sometimes demanded [3]. One

example is the cryptography used in smartphones, tablet PCs, and smart TVs (high-performance

television with an Internet connection). Furthermore, some devices that operate on batteries expect a

cryptographic algorithm that consumes less power. For example, environment-measuring devices

mailto:bassam.ahmed32@gmail.com

WASSN 2018 2 of 17

are often installed at locations where no utility power is available. Medical implant devices rely only

on battery power and are required to be as small as possible to lessen their effects on the human

body. Lightweight cryptography is expected to serve these applications [4].

Lightweight Cryptography has become one of the hot research topics. It is a relatively new

science that is mainly sub-field from cryptography. It concerns new designs, adaptions or efficient

implementations of cryptographic primitives and protocols. Due to the wide spreading of limited

resources devices and its applications besides very strong attacker cryptanalysis techniques and that

the nodes deployment in the harsh environment lead to new attacks —especially the possibility of

physical attacks—there is a necessary need for lightweight security solutions that are tailored to the

everywhere computing paradigm [5]. Lightweight cryptography is the part of cryptography using

the most basic and simple computational operations to provide security systems. Yet, combining

these operations to achieve a rigid and robust cryptosystem is a challenge that remains to be solved.

Consequently, the research and development of lightweight cryptography for the implementation

on devices with limited resources has been increased, and many cryptosystems have been proposed

in research manuscripts [6]. In this paper, we follow the approach of adapting the design and the

implementation of both hardware and software of the existing standardized block ciphers. A new

version of GOST algorithm is proposed which called “E-GOST”.

GOST block cipher is a Soviet and Russian government standard. It is the basis of most secure

information systems in Russia. It has a simple structure suitable for compact hardware

implementations. It has been classified as one of the ultra-lightweight block ciphers. Therefore, it is a

target for the constrained environments. The immunity of any block cipher against several attacks

depends basically on the rigidity of Substitution boxes (S-boxes) because it is the main non-linear

component of a block cipher. The design and characteristics of S-boxes of a block cipher are central

measures of resistance against all crypt-analytical techniques. Therefore, the analysis of an S-box is

very important. In this paper, a discussion and analysis of the S-boxes of the Central Bank of the

Russian Federation GOST version are introduced. Furthermore, a new substitution box is suggested

as more strong, rigid, and immune boxes against the various attacks.

The paper is organized as follows: In the next section, we are going to introduce the GOST

encryption algorithm briefly. Since the S-boxes was not specified in the original algorithm, this paper

discusses the selection of an appropriate approach for S-boxes selection in subsequent Section 3. We

also compare the linear and differential properties of the S-boxes as used by the Central Bank of the

Russian Federation and the proposed S-box. The bit-slice implementation of the proposed S-box is

given in section 4. The hardware implementation result of the proposed approach is presented in

Section 5. Finally, this paper is concluded in Section 6.

2. GOST Encryption Structure

GOST algorithm is a symmetric block cipher, which conforms to Feistel scheme. 64-bit blocks of

data are submitted to the input and converted into 64-bit blocks of encrypted data by 256-bit key [7].

Function F is applied in each round on the right side of plaintext messages ; it converts the

plaintext with three cryptographic operations:

Adding data and subkey modulo 232.

Substitution of data using secret S-boxes.

Left cyclic shift by 11 positions.

WASSN 2018 3 of 17

Output of F-function is added modulo 2 to the left part of the plaintext, then right and left sides

are swapped for next round. The overall process of the round function can be summarized in the

formal notation as the following:

𝑳 𝒊+𝟏 = 𝑹𝒊 (1)

𝑹 𝒊+𝟏 = 𝑳𝒊  (𝑺(𝑲𝒊 + 𝑹𝒊 𝒎𝒐𝒅 𝟐𝟑𝟐)

≪ 𝟏𝟏) (2)

where  denotes a bitwise exclusive OR and << a a rotation to the left by a bits.

The algorithm has 32 rounds. In the last round of encryption right and left parts are not

swapped. The overall dataflow diagram of GOST is shown in Figure 1. GOST uses 8 S-boxes, which

convert 4-bit input to 4-bit output. GOST has no predefined S-boxes unlike most encryption

algorithms and any values can be used for them. The Secret Key is a series of eight 32-bit phrases:

K1, K2, K3, K4, K5, K6, K7 and K8. One of these 32-bit phrases is used as a round subkey in every

encryption round. When round subkey is calculated, the following principle is used:

Table 1. Key schedule in GOST

Rounds 1 … 8 9 … 16

Keys k1 k2 k3 k4 k5 k6 k7 k8 k1 k2 k3 k4 k5 k6 k7 k8

Rounds 17 … 24 25 … 32

Keys k1 k2 k3 k4 k5 k6 k7 k8 k8 k7 k6 k5 k4 k3 k2 k1

from round 1 to round 24 the order is straight; from round 25 to round 32 reversed order is used [7].

The S-boxes accept a four-bit input and produce a four-bit output. The S-box substitution in the

round function consists of eight 4 × 4 S-boxes. The S-boxes are implementation-dependent – the

same S-boxes must be used by parties wishing to secure their communications using GOST. The

S-boxes can be kept confidential for additional safety. In the original standard where GOST was

specified, no S-boxes were given, but the S-boxes used at the Central Bank of Russian Federation is

published as a powerful example as shown in table 2.

Table 2. S-boxes of the Central Bank of Russian Federation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1 (x) 4 A 9 2 D 8 0 E 6 B 1 C 7 F 5 3

S2 (x) E B 4 C 6 D F A 2 3 8 1 0 7 5 9

S3 (x) 5 8 1 D A 3 4 2 E F C 7 6 0 9 B

https://en.wikipedia.org/wiki/Central_Bank_of_Russia
https://en.wikipedia.org/wiki/Central_Bank_of_Russia

WASSN 2018 4 of 17

S4 (x) 7 D A 1 0 8 9 F E 4 6 C B 2 5 3

S5 (x) 6 C 7 1 5 F D 8 4 A 9 E 0 3 B 2

S6 (x) 4 B A 0 7 2 1 D 3 6 8 5 9 C F E

S7 (x) D B 4 1 3 F 5 9 0 A E 7 6 8 2 C

S8 (x) 1 F D 0 5 7 A 4 9 2 3 E 6 B 8 C

Figure 1. Feistel structure of the traditional GOST algorithm

3. The Properties of S-Boxes

The GOST standard does not specify a set of S-boxes. In fact, one aim of the designers was to

have an encryption algorithm with a flexible security level.

Schneier [8] states that the Central Bank of Russian Federation has been using the S-boxes

described in Table 2. This set of S-boxes serves as an instance of GOST, but the suitable selection of

S-boxes is a design decision according to the standard. It is clear that the selection of the S-boxes has

a significant influence on the cryptographic strength of the cipher, thus a careful selection is crucial.

Please note that the standard does neither specify if the S-boxes used shall be different. Thus, with a

small area footprint in mind, we opt for selecting one S-box that is used eight times in parallel which

shown in table 3 – a similar approach as used in DESL/DESXL [9]. While DESL/DESXL lead to a

slightly modified standard algorithm.

Table 3. The proposed S-box in E-GOST

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 8 7 3 C D B 4 1 6 A 9 F 0 5 E 2

WASSN 2018 5 of 17

The linear and the differential properties are our main concern here and use the classification of

4-bit S-boxes published in [10] as a guideline for the selection of an appropriate S-box. In fact we

have chosen to use our proposed S-box, since it has a strong immunity against both linear and

differential cryptanalysis and has a low area footprint of 4-bit S-boxes beside the efficient bit-slice

implementation especially on constraints microprocessors like x86 architectures. To verify the

resistance of the algorithm to differential and linear cryptanalysis [11, 12] and other related attacks, it

is necessary to calculate the Maximum Difference Propagation Probability (DPPmax) and the

Maximum Input-Output Correlation (IOCmax) as well as the robustness of the S-box. The

calculation of both DPPmax and IOCmax are achieved by first building the XOR distribution and

Linear Approximation Tables respectively.

3.1. Linear Approximation Table (LAT)

For a given s-box constructed from a mapping 𝑓 ∶ 𝑍2
𝑛  𝑍2

𝑚, the linear approximation table

entry 𝐿𝐴𝑇(𝑎 ∙ 𝑏) is defined as:

𝐿𝐴𝑇(𝑎 ∙ 𝑏) = # {𝑥 𝜖 𝑍2
𝑛 |𝑎 ∙ 𝑥 = 𝑏 ∙ 𝑓(𝑥)}

− 2𝑛−1
(3)

where 𝑎 𝜖 𝑍2
𝑛 , and 𝑏 𝜖 {𝑍2

𝑚 }/0 , and 𝑎 ∙ 𝑥 denotes the inner product of the vectors a and x

evaluated over Z2. The linear approximation entry with the maximum absolute values is denoted by

Lmax.

3.2. XOR Distribution Table

For a given s-box constructed from a mapping 𝑓 ∶ 𝑍2
𝑛  𝑍2

𝑚, The XOR table entry 𝑁∆𝑥∆𝑦 is

defined as:

𝑵∆𝒙∆𝒚

= # {𝒙 𝝐 𝒁𝟐
𝒏 |𝒇(𝒙 ⊕ ∆𝒙) ⊕ 𝒇(𝒙) = ∆𝒚} (4)

where ∆𝑥𝜖 𝑍2
𝑛 , and ∆𝑦 𝜖 {𝑍2

𝑚 }. The entry Noo = 2n, is not taken into consideration as it does not

have any cryptographic significance. For ∆x ≠ 0, the maximum entry in the XOR table is denoted by

Dmax. Table 3 and Table 4 show the linear approximation and the differential distribution of the

Proposed S-box (SP) respectively. Also, appendix A and appendix B show the differential

distribution and the linear approximation of the S-boxes used by the Central Bank of Russian

Federation (S1 to S8) respectively.

From Table 5, where we summarized the linear and differential characteristics of these S-boxes,

it becomes clear that the proposed S-box is stronger in both linear and differential cryptanalysis

due to the strict design criteria. Therefore, in the following, we will also consider a GOST

implementation that uses eight times the proposed S-box. We will refer to this variant with the term

E-GOST while GOST-FB denotes the GOST variant that uses the S-boxes as used by the Central Bank

of Russian Federation.

Table 3. Linear approximation table of the proposed S-box

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WASSN 2018 6 of 17

0 2 2 0 0 0 2 2 2 2 0 4 4 2 2 0

0 0 0 0 0 0 4 0 0 0 4 4 0 0 4 0

0 0 2 0 2 2 0 2 2 4 2 2 0 2 0 4

0 2 2 0 0 4 2 2 2 2 0 0 0 2 2 4

0 2 2 0 0 0 2 2 2 2 4 0 4 2 2 0

0 2 0 4 2 2 2 0 0 2 2 2 4 0 2 0

0 0 0 0 0 0 4 0 4 0 0 0 0 4 4 0

0 4 2 0 2 2 0 2 2 0 2 2 0 2 0 4

0 2 2 0 4 0 2 2 2 2 0 0 0 2 2 4

0 2 0 0 2 2 2 4 0 2 2 2 0 4 2 0

0 2 0 4 2 2 2 0 0 2 2 2 4 0 2 0

0 0 4 0 4 4 0 4 0 0 0 0 0 0 0 0

0 0 2 4 2 2 0 2 2 4 2 2 0 2 0 0

0 2 4 0 2 2 2 0 4 2 2 2 0 0 2 0

0 4 2 4 2 2 0 2 2 0 2 2 0 2 0 0

3.3. XOR Distribution Table

For a given s-box constructed from a mapping 𝒇 ∶ 𝒁𝟐
𝒏  𝒁𝟐

𝒎, The XOR table entry

𝑁∆𝑥∆𝑦 is defined as:

𝑁∆𝑥∆𝑦

= # {𝑥 𝜖 𝑍2
𝑛 |𝑓(𝑥 ⊕ ∆𝑥) ⊕ 𝑓(𝑥) = ∆𝑦}

(4)

where ∆𝑥𝜖 𝑍2
𝑛 , and ∆𝑦 𝜖 {𝑍2

𝑚 }. The entry Noo = 2n, is not taken into consideration as it

does not have any cryptographic significance. For ∆x ≠ 0, the maximum entry in the XOR

table is denoted by Dmax. Table 3 and Table 4 show the linear approximation and the

WASSN 2018 7 of 17

differential distribution of the Proposed S-box (SP) respectively. Also, appendix A and

appendix B show the differential distribution and the linear approximation of the S-boxes used

by the Central Bank of Russian Federation (S1 to S8), respectively.

From Table 5, where we summarize the linear and differential characteristics of these

S-boxes, it becomes clear that the proposed S-box is stronger both with regard to linear and

differential cryptanalysis due to the strict design criteria. Therefore in the following we will

also consider a GOST implementation that uses eight times the proposed S-box. We will refer

to this variant with the term E-GOST while GOST-FB denotes the GOST variant that uses the

S-boxes as used by the Central Bank of Russian Federation.

Table 4. XOR distribution table of the proposed S-box

Table 5. Summary of the non-linear properties of GOST block cipher S-boxes and the

proposed S-box

S - Box of Russian Central Bank Federation (GOST-FB)

S-Box Dmax(XOR Dist. Table) Lmax(Linear App. Table)

S1 6 ±4

S2 6 ±6

S3 6 ±6

S4 6 ±6

S5 4 6

S6 6 6

S7 8 ±6

WASSN 2018 8 of 17

S8 8 ±6

The Proposed S - Box (E-GOST)

S8 4 ±4

3.4. Robustness of E-GOST S-boxes

Seberry [13] defines an expression for the robustness, R, of an S-box. A measure of an

S-box's resistance to differential cryptanalysis is robustness (R). Robustness is based on the

Differential Distribution Table (DDT) two functions. The first is the number of nonzero

components, N, in the DDT's first column (except the first component). These denote cases

when an input change leads to no output change. Such events are a weakness because they

decrease an algorithm's complexity and play a major role in differential cryptanalysis. The

other feature is the largest value found in the DDT, L, other than the top left element. The

robustness is given by equation 5:

𝑅 = (1 − 𝑁/2𝑛)(1 – 𝐿/2𝑛) (5)

where n is the number of input bits. The higher R is, the more difficult differential

cryptanalysis is to perform. Table 6 shows that the proposed S-box has the highest value of R,

and then the proposed S-box (SP) can be more resistance to differential cryptanalysis.

Table 6. Robustness of GOST block cipher S-boxes

S - Boxes of Russian Central Bank Federation

S-Box nNZ Dmax RS

S1 0 6 0.625

S2 0 6 0.625

S3 0 6 0.625

S4 0 6 0.625

S5 0 4 0.75

S6 0 6 0.625

S7 0 8 0.5

S8 0 8 0.5

S - Boxes of Most Recent Version

S8 0 4 0.75

WASSN 2018 9 of 17

4. The Bit-Slice Implementation of The Proposed S-Box

Lightweight block ciphers are designed so as to fit into very constrained environments.

They generally aim to be implemented efficiently on a large variety of platforms, but usually

not really with software performance in mind. For classical lightweight applications where

many constrained devices communicate with a server, it is also crucial that the cipher has

good software performance on the server side. In this paper, we consider a context where we

have very limited processing resources and throughput requirements. We suggest low-cost

encryption schemes (i.e. tiny code size and memory) for processors with a restricted set of

instructions (i.e. AND, OR, XOR gates, word rotation and modular addition). Recent work

has shown that bit-slice implementations applied to different cryptographic algorithms led to

very good software speeds, thus making lightweight ciphers interesting for cloud applications.

In this article, we introduce a software implementation of lightweight ciphers on x86

architectures, with a special focus GOST algorithm. We apply to our portfolio of primitives

the bit slice implementation trick for 4-bit SBox, which gives good performance, extra

side-channels protection, and is quite fit for many lightweight applications.

The x86 processors, which can be found in nearly every personal computer, have some

clearly distinguishing features when compared to more modern architectures. One of these is

the small number of registers, only 8. Another is the instruction set, where almost all

instructions always modify one of their input registers. If those essential properties of the x86

processors have been ignored, thus the result is a high so-called ’register pressure’, meaning

compilers must put temporary variables in memory, issuing load and store instructions in

addition to the actual computation. When required, the compiler also receives the copying

values task.

Cryptographic algorithm implementation is typically optimized for one or more

requirements such as latency, performance, power consumption, memory consumption, etc.,

but also criteria such as the expense of adding masking countermeasures to safeguard against

side-channel attacks. It is worthwhile to spend time on this optimization, as the

implementations are typically used many times. It is usually a hard problem to find an

implementation that is theoretically minimal with respect to the criteria, e.g., general circuit

WASSN 2018 10 of 17

minimization is complete [14]. However, for small functions this is still possible, using, for

instance, bit slice solvers. Especially for building blocks that can be used in multiple

cryptographic algorithms, such as S-boxes, it is useful to look at methods for finding minimal

implementations with respect to some given criteria. we first discuss the problem of finding

minimal implementations of the nonlinear functions. We give a sequence method “set of

routines” for finding the shortest program to implement the proposed S-boxes.

If we restrict our S-box implementations to the AND; OR; MOVE; XOR; NOT

operations, we only need to consider the number of ANDs and ORs. Optimizing for this goal

is useful in the case of protecting against side- channel attacks using random masks, where

nonlinear gates are typically more expensive to mask. There are also applications in

multi-party computation and fully homomorphic encryption, where the cost of nonlinear

operations is even more significant. Tiago et al.[15] presents another job where bit-sliced

application and masking technique are used to avoid side channel assaults. Constant execution

time can be accomplished in bit-sliced execution that helps safeguard against timing attacks.

We present a method for finding efficient instruction sequences for the proposed S-box. There

are only 8 registers for popular x86 processors, of which even fewer are accessible for

computations. Also, the instructions are damaging, replacing one output input. Alternative

variants of the S-box guidelines are provided, which require only 5 registers and use

parallelism as well.

Another aspect is the encryption speed they allow in different applications. The goal of

this work has been to find ways to improve the execution speed of the GOST algorithm on the

x86 processors, including use of two-way parallel execution.

The 4-bit S-boxes are 16-element permutations and are performed through simple

Boolean operations in a bit parallel (also known as bit slice) style. A 4-digit binary number

can represent each number from 0 to 15, so these features map 4 input bits to 4 output bits.

Now, we need some way to transform any 4 input bits into the corresponding 4 output bits

using only those instructions available in the x86 instruction set, and in a bit parallel way.

We’ll propose the S-box represented in table 3 as an efficient implantation:

Now rewrite x and S (x) in binary:

WASSN 2018 11 of 17

Each column in this table contains the bits of some value for x, as well as the bits of the

corresponding S(x). The set of all columns contains all possible values for x. The number of

columns is thus determined by the number of possible inputs and it is not related to the word

length of any processor.

If we find a way of combining the xi rows by Boolean operations so that we get the S,i

rows, then applying those operations to the bits of an input value x is equivalent to looking up

S(x). To see how this is done, we will look at the execution of an instruction sequence for S2.

The x86 instructions usable for the S-boxes are these:

Instruction Effect
C

expression

and a, b a := a · b a &= b

or a,b a := a + b a |= b

xor a,b a := a  b a ˆ= b

not a a := a  1 a = ˜a

mov a, b a := b a = b

Suppose we have 5 registers, named r0, . . . , r4, available for our computations, and 4 of them

initially contain our 4 input bits (ri contains xi, 0 i 3). As r4 is not an input register, we just

ignore its previous contents. Thus, we have this initial state:

R4

R3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

R2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

R1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

R0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The instruction sequence found by the search program (with two-way parallelism shown) is

this:

WASSN 2018 12 of 17

mov r4, r1 and r1, r3

xor r1, r2 xor r3, r0

xor r3, r1 or r2, r4

xor r2, r0 xor r4, r3

mov r0, r2 or r2, r4

xor r2, r1 and r1, r0

xor r4, r1 xor r0, r2

xor r0, r4 not r4

Executing the first line of instructions makes the modifications r4 := r1; r1 := r1 · r3, giving us

this new state:

R4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

R3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

R2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

R1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

R0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Next, we perform r1 := r1  r2; r3 := r3  r0.

R4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

R3 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

R2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

R1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0

R0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Now things get more interesting. Notice the values in the r3 row after r3 := r3  r1; r2 := r2 +

r4.

R4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

R3 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0

R2 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

R1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0

R0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r3 is now the same as S2(x), one of our wanted output bits. Executing the next three lines of

instruction pairs, we reach this state:

R4 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1

R3 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0

R2 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1

R1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0

R0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0

WASSN 2018 13 of 17

Now r2 is the same as S1(x), The next two lines complete the work:

R4 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0

R3 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0

R2 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1

R1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0

R0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0

Now after completing the work, note that the values in the registers are the same as S(x)

according to the following manner:

Register Equivalent

R4 S3

R3 S2

R2 S1

R0 S0

5. Hardware Implementations

There are different ways for implementing a cryptographic circuit. This paper considers three

basic implementation architectures, unrolled, round, and serial as indicated in Figure 2. Efficient

implementation has become one of the most challenges in different applications especially,

constraint resources devices applications. Therefore, the following metrics have to be taken in

consideration if the encryption schemes are implemented in hardware.

 Low gate area which is measured in Gate Equivalents (GE), both memory consumption and

implementation size reflect the gate area.

 High throughput; reflects the encryption process speed. It measured in bits or bytes per second,

 Low latency, which defines the time taken to obtain the output of the circuit once its input has

been set. It measured in seconds.

 Low power consumption; indicates the amount of power needed to use the circuit. It measured

in Watts.

These four criteria compete with one another. For instance, a low latency tends to imply a higher

area. Small implementation is also by far slow while the most energy efficient is the largest.

The optimal trade-off between these quantities is very much context dependent. In fact,

primitives have been proposed that have been optimized for different corners of the design space:

some allow a very low latency implementation, others a very small one (in terms of GE) which is

concerned here, etc. Regardless of the exact platform, a given primitive may be implemented using

different approach.

In the case of the hardware implementation of 12 algorithms; Two types of implementation were

evaluated: one performing only the encryption operation and the other performing both encryption

and decryption with the same module in which the operations are switched by a control signal.

Table7 compares the implemented circuit sizes in terms of gate equivariant (area) excluding the

interface circuits.

Let us consider unrolled implementation, the different block ciphers gave low latency however

much larger than the requirements of the lightweight cryptography. Such unrolled implementations

are popular when a low-latency is targeted as those allow a full evaluation in one clock cycle. The

downside is then the far larger size of the circuit. Consequentially, serialized and round-based

implementations are recommended for E-GOST lightweight hardware implementation. We restrict

WASSN 2018 14 of 17

ourselves to serialized implementation, since it has minimal number of gate equivalents (GE). Beside

a very small footprint implementation in hardware E-GOST has a rather high throughput giving

good energy-per-bit. Due to the simplicity of the circuit logic involved, serialized implementations

allow a far higher clock frequency so they may not be as slow as one might fear. Still, their main

advantage is a much smaller circuit.

Figure 2. Basic Implementation Methods (3-a) unrolled, (3-b) round and (3-c) serial implementation.

5.1 Serial Implementation of E-Gost

Figure 3 shows fixed key lightweight hardware architecture of E-GOST with single S-box from

[16]. It operates on 4-bit data path chunks; however, the permutation process is considered the most

implementation constraint (challenge). Where the rotation by 11-bit position can’t applicable on 4-bit

chunks, but instead we should to operate on the whole state. The proposed architecture takes 8 clock

cycles to process all chunks of the state and to perform one round of E-GOST.

Then the content of the registers is swapped as it is required by the Feistel structure within one

clock cycle, i.e. it operates on the whole state. This clock cycle is used to perform the 11-bit rotation,

but in this architecture both halves of the state have XORed already. the right halves in the previous

clock cycles have to be shifted by 11-bit positions to the right, before storing it as the new left halve.

Then when the XOR sum of both halves is rotated by 11-bit positions to the left, the final step of one

round of GOST is performed. In short, the following operations are carried out when the content of

the registers is swapped:

𝐿 𝑖+1 = 𝑅𝑖 ≪ 11 (1)

𝑅 𝑖+1 = (𝐿𝑖  𝑆(𝐾𝑖 + 𝑅𝑖 𝑚𝑜𝑑 232))

≪ 11
(2)

On the other hand, the key schedule of GOST is very simple: in every round a 32-bit chunk of the

256-bit key is used as the round key and for the last eight rounds the order is swapped (see Table 1).

Thus, apart from a 32-bit wide 8- to-1 MUX to select the right round key there is only very little logic

required for a round-based implementation. For a serialized implementation we need an additional

4-bit wide 8-to-1 MUX to select the right chunk of the round key. If the application requires the key

to be updated, 256 additional flip-flops are required for storage. However, especially in passive

RFID-tag scenarios it is very unlikely that the key needs to be changed. Therefore, the main target for

our implementations are applications with a fixed key. Then only a small amount of (cheap) tie cells

are required to hard-wire the key.

Table7. comparison of the implemented circuit sizes of 12 algorithms in terms of gate

equivariant excluding the interface circuits.

Algorithm

Encryption Circuit Size without Interface (kgate)

Unr

olled

Enc

Unr

olled

Enc/

Dec

R

ound

En

c

Rou

nd

Enc

/Dec

S

erial

E

nc

Seri

al

Enc

/Dec

(a)

(b)

(c)

WASSN 2018 15 of 17

AES(table) (128/128)
109.

7

205.

6
--- ---

--

-

AES(comp) (128/128) 76.1
141.

5

12

.4
15.6

3

.2
4.1

Camellia(comp)

(128/128)
57.4 60.6

8.

0
9.0

4

.1
4.3

CLEFIA

(128/128)
71.5 71.5

7.

3
7.1

3

.6
3.8

SIMON

(128/128)
60.4 71.3

4.

3
5.0

2

.1
2.9

SPECK

(128/128)
41.6 66.4

4.

4
6.8

2

.2
3.1

Midori

(128/128)
31.8 52.9

4.

3
5.6

2

.2
2.6

TDES

(64/168)
52.8 53.8

5.

3
7.9

--

-

LED

(64/128)
71.9

212.

9

3.

8
4.7

3

.0
4.3

PRINCE

(128/128)
7.8 8.1

2.

7
3.0

1

.6
1.8

SIMON

(64/128)
21.8 25.4

3.

2
3.9

1

.7
2.5

SPECK

(64/128)
17.4 27.8

3.

2
4.6

1

.8
2.7

Midori

(64/128)
10.2 18.5

2.

6
3.2

1

.5
1.7

SIMON

(64/96)
18.4 21.9

2.

7
3.2

1

.4
2.0

SPECK

(64/96)
16.8 26.8

2.

8
4.1

1

.6
2.3

PRESENT

(64/80)
22.0 42.1

2.

2
2.9

2

.0
2.8

PICCOLO

(64/80)
17.4 21.1

1.

6
1.9

1

.1
1.3

TWINE

(64/80)
17.8 23.9

2.

7
2.9

2

.4
2.5

SIMON

(32/64)
7.8 9.2

1.

7
2.1

1

.0
1.4

SPECK

(32/64)
7.0 11.2

1.

7
2.4

1

.1
1.6

Below we give such a breakdown of both GOST variants. Recall that GOST-FB refers to the

variant that uses the set of S-boxes as used by the Central Bank of Russian Federation while E-GOST

refers to the variant that uses the proposed S-box eight times.

The sBox Layer module in the serialized E-GOST is by far the smallest, because we only need to

implement one S-box, while GOST-FB needs all 8 S-boxes and an additional MUX.

WASSN 2018 16 of 17

Figure 3. Architecture of a lightweight hardware architecture with a 4-bit data path for GOST.

As one can see, a serialized implementation leads to smaller area requirements, mostly due to a

scaled down key addition module (saves 230 GE) and XOR gates (saves 70 GE). However, the

serialized architecture also introduces some area overhead, because additional MUXes are required:

one for the state register (15 GE) and one to select the right chunk of the round key (49 GE). If the

GOST variant uses different S-boxes such as GOST-FB, but not GOST-PS, another MUX is required

to select the correct S-box (52 GE). Furthermore, an NLFSR (23 GE) is required as a serial counter and

the key addition requires a flip-flop to store the carry bit. The round counter is smaller in the

round-based architectures, which we believe is because in the serialized architecture gated registers

are required, but not in the round-based. Finally, table 7 states that the smallest footprint

implementation in hardware of the algorithms is 1.0 kGE, however, E-GOST has a smaller footprint

implementation. E-GOST requires 0.651 KGE.

6. Conclusions

We proposed a new version of GOST called E-GOST that uses a new cryptographically strong

proposed S-box since the S-boxes are not specified in the original standard; we discuss the selection

of an appropriate approach for the selection of S-boxes. We introduced an efficient bit-slice software

implementation on x86 processors architecture as well. We also compare the linear and differential

properties of the S-boxes as used by the Central Bank of Russian Federation and the proposed S-box.

Finally, we show that E-GOST has the smallest footprint implementation in hardware.

Supplementary Materials: All data sets are included in the article.

Author Contributions: All the authors have contributed equally in the current work.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Serpanos, D., & Wolf, M. (2017). Internet-of-things (IoT) systems: architectures, algorithms, methodologies.

Springer.

2. Ziegler, S. (Ed.). (2019). Internet of Things Security and Data Protection. Springer.

3. Ziegeldorf, J. H., Morchon, O. G., & Wehrle, K. (2014). Privacy in the Internet of Things: threats and

challenges. Security and Communication Networks, 7(12), 2728-2742.

4. Serpanos, D. N., & Voyiatzis, A. G. (2013). Security challenges in embedded systems. ACM Transactions on

embedded computing systems (TECS), 12(1s), 1-10.

5. McKay, K., Bassham, L., Sönmez Turan, M., & Mouha, N. (2016). Report on lightweight cryptography (No.

NIST Internal or Interagency Report (NISTIR) 8114 (Draft)). National Institute of Standards and

Technology.

6. Biryukov, A., & Perrin, L. P. (2017). State of the art in lightweight symmetric cryptography.

Esch-sur-Alzette, Luxembourg. http://hdl.handle.net/10993/31319.

7. De Canni`ere, C. (2005). GOST article. In: Encyclopedia of Cryptography and Security. pp. 242-243.

8. Schneier, B. (1996). Section 14.1 Gost, in applied cryptography, second edition. In John Wiley and Sons.

http://hdl.handle.net/10993/31319

WASSN 2018 17 of 17

9. Leander, G., Paar, C., Poschmann, A., & Schramm, K. (2007). New lightweight DES variants.

In International Workshop on Fast Software Encryption (pp. 196-210). Springer, Berlin, Heidelberg.

10. Saarinen, M. (2012). Cryptographic Analysis of All 4 × 4 -Bit SBoxes. Cryptography, Springer.

11. Matsui, M. (1993). Linear cryptanalysis method for DES cipher. In Workshop on the Theory and Application of

of Cryptographic Techniques , Springer, Berlin, Heidelberg, pp. 386-397.

12. Courtois, N. T., & Misztal, M. (2011). Differential Cryptanalysis of GOST. IACR Cryptol. ePrint Arch., 2011,

312.

13. Seberry, J., Zhang, X. M., & Zheng, Y. (1993, December). Systematic generation of cryptographically robust

S-boxes. In Proceedings of the 1st ACM Conference on Computer and Communications Security (pp. 171-182).

14. Ullrich, M., De Canniere, C., Indesteege, S., Küçük, Ö., Mouha, N., & Preneel, B. (2011, February). Finding

optimal bitsliced implementations of 4× 4-bit S-boxes. In SKEW 2011 Symmetric Key Encryption Workshop,

Copenhagen, Denmark (pp. 16-17).

15. Tiago, B. S., & Diego, A. (2017). Julio OpezPRESENT runs fast: efficient and secure implementation in

software International Association for Cryptologic Research. CHES, pp. 644-664.

16. Poschmann, A., Ling, S., & Wang, H. (2010, August). 256 bit standardized crypto for 650 GE–GOST

revisited. In International Workshop on Cryptographic Hardware and Embedded Systems (pp. 219-233). Springer,

Berlin, Heidelberg.

	1. Introduction
	The revolution of Information and Communication Technology (ICT) is mainly based on constrained resources devices. These devices suffer from limited resources such as CPU capabilities, bandwidth, memory (ROM and RAM), and battery lifespan. There are m...
	However, since providing such functions is not the main purpose of IoT services, the functions should not hinder the operations for the users. Moreover, it is unlikely that all IoT devices utilize high-performance CPUs. It should be assumed that some ...
	Lightweight Cryptography has become one of the hot research topics. It is a relatively new science that is mainly sub-field from cryptography. It concerns new designs, adaptions or efficient implementations of cryptographic primitives and protocols. D...
	GOST block cipher is a Soviet and Russian government standard. It is the basis of most secure information systems in Russia. It has a simple structure suitable for compact hardware implementations. It has been classified as one of the ultra-lightweigh...
	The paper is organized as follows: In the next section, we are going to introduce the GOST encryption algorithm briefly. Since the S-boxes was not specified in the original algorithm, this paper discusses the selection of an appropriate approach for S...
	2. GOST Encryption Structure
	GOST algorithm is a symmetric block cipher, which conforms to Feistel scheme. 64-bit blocks of data are submitted to the input and converted into 64-bit blocks of encrypted data by 256-bit key [7]. Function F is applied in each round on the right side...
	Adding data and subkey modulo 232.
	Substitution of data using secret S-boxes.
	Left cyclic shift by 11 positions.
	Output of F-function is added modulo 2 to the left part of the plaintext, then right and left sides are swapped for next round. The overall process of the round function can be summarized in the formal notation as the following:
	where (denotes a bitwise exclusive OR and << a a rotation to the left by a bits.
	The algorithm has 32 rounds. In the last round of encryption right and left parts are not swapped. The overall dataflow diagram of GOST is shown in Figure 1. GOST uses 8 S-boxes, which convert 4-bit input to 4-bit output. GOST has no predefined S-boxe...
	Table 1. Key schedule in GOST
	from round 1 to round 24 the order is straight; from round 25 to round 32 reversed order is used [7].
	The S-boxes accept a four-bit input and produce a four-bit output. The S-box substitution in the round function consists of eight 4 × 4 S-boxes. The S-boxes are implementation-dependent – the same S-boxes must be used by parties wishing to secure thei...
	Table 2. S-boxes of the Central Bank of Russian Federation
	Figure 1. Feistel structure of the traditional GOST algorithm
	3. The Properties of S-Boxes
	The GOST standard does not specify a set of S-boxes. In fact, one aim of the designers was to have an encryption algorithm with a flexible security level.
	Schneier [8] states that the Central Bank of Russian Federation has been using the S-boxes described in Table 2. This set of S-boxes serves as an instance of GOST, but the suitable selection of S-boxes is a design decision according to the standard. I...
	Table 3. The proposed S-box in E-GOST
	The linear and the differential properties are our main concern here and use the classification of 4-bit S-boxes published in [10] as a guideline for the selection of an appropriate S-box. In fact we have chosen to use our proposed S-box, since it has...
	3.1. Linear Approximation Table (LAT)
	For a given s-box constructed from a mapping ,𝑓 :𝑍-2-𝑛. (, 𝑍-2-𝑚., the linear approximation table entry 𝐿𝐴𝑇(𝑎∙𝑏) is defined as:
	where 𝑎 𝜖 ,𝑍-2-𝑛 ., and 𝑏 𝜖 {,𝑍-2-𝑚 .}/0 , and 𝑎∙𝑥 denotes the inner product of the vectors a and x evaluated over Z2. The linear approximation entry with the maximum absolute values is denoted by Lmax.
	3.2. XOR Distribution Table
	For a given s-box constructed from a mapping ,𝑓 :𝑍-2-𝑛. (, 𝑍-2-𝑚., The XOR table entry ,𝑁-∆𝑥∆𝑦. is defined as:
	where ∆𝑥𝜖 ,𝑍-2-𝑛 ., and ∆𝑦 𝜖 {,𝑍-2-𝑚 .}. The entry Noo = 2n, is not taken into consideration as it does not have any cryptographic significance. For ∆x≠0, the maximum entry in the XOR table is denoted by Dmax. Table 3 and Table 4 show the line...
	From Table 5, where we summarized the linear and differential characteristics of these S-boxes, it becomes clear that the proposed S-box is stronger in both linear and differential cryptanalysis due to the strict design criteria. Therefore, in the f...
	Table 3. Linear approximation table of the proposed S-box
	5. Hardware Implementations
	6. Conclusions
	References

