ISBN: 978-1-63802-006-6

WAS Press Proceedings

World Advanced Science LLC. (WAS)

5th International Conference on Biological, Biomedical Sciences, Biotechnology and Applications

(BBSBA2024)

2024

Proceeding of

5th International Conference on Biological, Biomedical Sciences, Biotechnology and Applications

The 5th International Conference on Biological, Biomedical Sciences, Biotechnology and Applications

Copyright ©2024 by WAS Press. For information contact : Address: World Advanced Science LLC (WAS), 2701 Centerville Road, New Castle County, Wilmington, Delaware 19808, USA. Website: https://worldascience.com/waspress/index.php/press/catalog E-mails: waspress@worldascience.com worldascience@gmail.com

Book and Cover design by Designer ISBN: <u>978-1-63802-006-6</u>

World Advanced Science LLC (WAS), 2701 Centerville Road, New Castle County, Wilmington, Delaware 19808, USA. with registration No. 3619939 Email: waspress@worldascience.com

CONTENTS

IN TR O D U C T I O N	1
G O A L S	1
ORGANIZING COMMITTEE	5
PUBLICATION PARTNER	7
LIST OF SPEAKERS	8
LIST OF AUTHORS	11
MESSAGE FROM THE HOSTING PARTNER	15
MESSAGE FROM BBSBACHAIRMAN	17
ABSTRACTS & POSTERS	19
A C K N O W L E D G M E N T S	32

INTRODUCTION

On behalf of the *BBSBA2024* organizing committee, we extend a warm welcome to all attendees! We look forward to a stimulating conference filled with thought-provoking presentations, insightful discussions, and valuable networking opportunities.

GOALS

BBSBA2024 has featured a cutting edge research on Biosciences and Applications. Speakers have covered a range of mechanisms underlying Biological sciences and their Applications. New findings in biology and interdisciplinary science have been highlighted, along with emerging technologies in bioengineering, structural biology, and imaging for highresolution studies.

BBSBA2024 is specifically directed to:

1- Foster Collaboration: BBSBA2024 creates a platform for researchers, scientists, and industry professionals to connect, share ideas, and foster new collaborations across disciplines.

2- Advance Knowledge: BBSBA2024 provides a forum to present and discuss the latest research findings in biological, biomedical sciences, biotechnology, and their applications.

3- *Identify Challenges and Solutions: BBSBA2024* addresses critical challenges in these fields and explore innovative solutions through discussions and presentations.

4- *Promote Innovation: BBSBA2024 encourages the development and implementation of new biotechnology solutions to improve human health, agriculture, and the environment.*

5- Inspire the Next Generation: BBSBA2024 sparks interest and inspire future generations of scientists and researchers in these fields.

All papers were reviewed using a blind review process: names and affiliations of the authors were removed from the manuscript, and reviewers did not know each other's identities, nor did the authors receive information about who had reviewed their manuscript.

Conference Chair, BBSBA2024

Prof. AlaaEddeen M. Seufi

Professor of Molecular Genetics *EIC: WAS Science Nature Journal (WASSN) ISSN: 2766-7715* Dept of Entomology, Fac of Science, Cairo Univ., Giza, Egypt. Email: alaaseufi@yahoo.com, alaaseufi@gmail.com

WAS Contact: waspress@worldascience.com

ORGANIZING COMMITTE

General Chair:

Prof. AlaaEddeen M. Seufi, Egypt.

Co-Chairs:

Prof. Christian Studenik, Vienna.

Dr. Ahmed M. S. Hegazy, Egypt.

Publication Chairs:

Prof. Mohamed K. A., Egypt.

Prof. Rabie A. Ramadan. University of Nizwa, Oman.

Dr. Mekdad A. S., Saudi Arabia.

Publicity Chair:

Dr. Aufy Mohamed, Vienna.

Special Session Chairs:

Dr. Rosale M. T., France.

Dr. Samia F. J., Algeria.

Local Organization Chair:

Prof. Christian Studenik, Vienna.

International Advisory Board:

Prof. Annette B. D., USA.

Prof. Andreas W. L., Australia.

Prof. Elsheikh A. Abdelkader, Egypt.

Prof. Hussein H. Abulreesh, Saudi Arabia

Prof. Ashraf Mashaly, Canada.

- Prof. Rajender Bathla, India.
- Prof. Sergey .I M., Russia.
- Prof. Shepherd A. B., UK.
- Prof. Susanne N. N., USA.
- Dr. G. Suseendran, India
- Dr. Ishak E. A., Egypt.
- Dr. Israil M., India.
- Dr. Sharma M., India.
- Dr. Silva M. S., Brazil.
- Dr. Stjernholm Y. L., Sweden.
- **Technical Program Committee:**
- Prof. Abdallah S. A., USA.
- Prof. Anil K. N., USA.
- Prof. Azab A. Mohamed, Egypt.
- Prof. El Deeb R. Mahmoud, Egypt.
- Prof. Alajmi R. A., Saudi Arabia.
- Prof. Abulreesh Hussein, Saudi Arabia.
- Dr. Ahmed M. Hegazy, Egypt.
- Dr. Anas A. A., Egypt.
- Dr. Aufy M., Vienna.
- Dr. Balint F. U., Hungary.
- Dr. Elsalemi F. M., Jordan.

BBSBA2024 PUBLICATION PARTNERS

All accepted abstracts will be published in the *BBSBA2024* proceedings having ISBN no.: **978-1-63802-**006-6

Optionally, authors can choose to publish full articles in one of the following journals according to journal requirements and Fees:

Bioscience Research (APC applied).

> Advances in Animal and Veterinary Sciences (APC applied).

> Journal of Animal Health and Production (APC applied)

> WAS Science Nature Journal (Free).

LIST OF SPEAKERS, BBSBA2024

Keynote Speakers

> Prof. Iqbal Ahmad

Professor and Ex. Chairman,

Department of Agricultural Microbiology,

Faculty of Agricultural Sciences,

Aligarh Muslim University, Aligarh, India.

Email: ahmadiqbal8@yahoo.co.in

➢ ao. Univ.- Prof. Mag. Dr. Christian Studenik

Professor and Chairman,Department of Pharmaceutical Sciences,

Faculty of Life Sciences,

University of Vienna, Austria. Email: christian.studenik@univie.ac.at

Speakers

Dr. Asma'U Mahe

Bayero University, Kano, Nigeria

Email: maheasmau@gmail.com

> Dr. Rasha M. Alzayed

Biology Department, College of Science,

Jouf University, Saudi Arabia.

Email: rmalzayed@ju.edu.sa

> Mrs. Mashael S. H. Al-Shammari

College of Science, Jouf University, Saudi Arabia.

Email: mshael.fm44@gmail.com

> Dr. Shaymaa Hussein Mahmoud

Menoufia University, Egypt.

Email: drshaymaahussein@gmail.com

Dr. Hanan H. Taher

Biology Department, College of Science,

Jouf University, Saudi Arabia.

Email: httaher@ju.edu.sa

> Ms. Rawan Al-Sharari and Dr. Fatma H. Galal

Biology Department, College of Science,

Jouf University, Saudi Arabia.

Email: fhgalal@ju.edu.sa

Dr. Shaima M.N. Moustafa

Biology Department, College of Science,

Jouf University, Saudi Arabia.

Email: shymaa.nabil@ju.edu.sa

> Dr. Mohamed F. Hasaneen

Biology Department, College of Science,

Jouf University, Saudi Arabia.

Email: mfahmad@ju.edu.sa

LIST OF AUTHORS, BBSBA2024

> Rasha M. Alzayed

	Jouf	University,	Saudi	Arabia.Email:
rn	nalzayed@j	u.edu.sa		
	Mashael S. I	H. Al-Shammari		
	Jouf Univ	ersity, Saudi Arab	ia.	

Email: mshael.fm44@gmail.com

➢ Fatma H.Galal

Jouf University, Saudi Arabia.

Email: fhgalal@ju.edu.sa

> AlaaEddeen M.Seufi

Cairo University, Egypt.

Email: alaaseufi@yahoo.com

> Asma'U Mahe

Bayero University Kano, Nigeria.

Email: maheasmau@gmail.com

> Abdullahi A. Imam

Bayero University, Kano, Nigeria.

Email: aaimam.bch@buk.edu.ng

Khadija I. Baiwa

Kano State College, Kano State, Nigeria. Email: khadijahbaiwa@gmail.com

> Adam A. Adam

Federal University, Dutse, Nigeria.

Email: adam.a@fud.edu.ng

Suleiman O. Alakanse

University of Ilorin, Nigeria.

Email: oluwaseunalakanse@yahoo.com

Shaymaa Mahmoud

Menoufia Univesity, Egypt.

Email: drshaymaahussein@gmail.com

≻ Hanan Hamza

Jouf University, Saudi Arabia.

Email: httaher@ju.edu.sa

Huda Al-Ruwaili

Jouf University, Saudi Arabia.

Email: huda@yahoo.com

Sarah Al-Anazi

Jouf University, Saudi Arabia.

Email: sarah@yahoo.com

Shahed Al-Shammari

Jouf University, Saudi Arabia.

Email: shahed@yahoo.com

> Nedal M. Fahmy

University college of Tayma, UT, Saudi Arabia.

Email: nedal@yahoo.com

> Shaima Moustafa

Jouf University, Saudi Arabia.

Email: shaima@yahoo.com

Riman El-Talib

Al-Andalus School, Sakaka, Saudi Arabia.

Email: riman@yahoo.com

Bashayer AlSabilah

Ryiadh Al-Mawaheb School, Sakaka, Saudi Arabia.

Email: Alsabilah@yahoo.com

> Entesar AlOqayel

Ministry of education, Saudi Arabia.

Email: Aloqayel@gmail.com

> Mohamed Hasaneen

Jouf university, Saudi Arabia.

Email: mfahmad@ju.edu.sa

MESSAGE FROM THE HOSTING PARTNER BBSBA2024

The World Advanced Science (WAS) LLC. and University of Vienna are proud hosting partners of the *5th International Conference on Biological, Biomedical Sciences, Biotechnology, and Applications* held at the halls of *Division of Pharmacology and Toxicology, University of Vienna, Austria* on 25-26 July, 2024. This is our fifth time collaborating with WAS Press to organize this important conference. We are excited to be a part of a conference that allows scholars and practitioners from around the world, especially Saudi Arabia, to present their research and practical ideas to enhance Life Sciences.

We were founded in 2018 as a developing publisher in the USA. We launched our first Open Access, Multidisciplinary journal *WAS Science Nature journal (WASSN), having ISSN: 2766-7715.* We plan to publish additional WAS Journals, Books, and Proceedings that will cover a wide range of fields shortly. WAS intended to offer many online Webinars, Training Courses, and Workshops to prepare

instructors and educators for future promising jobs.

This International Conference on Life Sciences fits with the mission of WAS to enhance and improve scientific practice worldwide. More information about WAS can be obtained from our website (https://worldascience.com/waspress/index.php/press/) or by emailing to: waspress@worldascience.com, WAS Press Principal and WAS Manager OR to: worldascience@gmail.com, WAS Press Technical Support.

MESSAGE FROM THE CONFERENCE CHAIR BBSBA2024

Hello and welcome, everybody.

It is my great pleasure to serve as a Conference Chair for the fifth time for the *International Conference on Biological, Biomedical Sciences, Biotechnology and Applications*, organized by WAS LLC., and WAS Press. All conferences were very lively events where Life Science researchers and practitioners from around the world came together to discuss a wide array of important issues in biosciences.

I would like to thank all members of our Organizing Committee, Keynote Speakes, Presenters, and Attendees for supporting all aspects of *BBSBA2024* Planning and Success. This year we are proud to have distinctive keynote speakers who shared their knowledge and explained many lighting ideas about the hottest topics of research and innovations. We had Sixty Nine attendees and presenters from different countries.

I hope the conference allowed us to engage with our peers,

discuss our ideas for research and practice, and enhance opportunities for collaboration with other scientists.

We also invite you to attend our coming 6th International Conference on Biological, Biomedical Sciences, Biotechnology, and Applications. BBSBA2025 is intended to be held in Vienna, Austeria, by the next July, 2025. We hope you will spend some time exploring Vienna, one of the most dazzling cities worldwide. Meanwhile, we will keep you updated timely with our news and events.

Thank you,

Conference Chair BBSBA 2024

Prof. AlaaEddeen M. Seufi

Professor of Molecular Genetics

EIC: WAS Science Nature Journal (WASSN) ISSN: 2766-7715

Dept of Entomology, Fac of Science,

Cairo Univ., Giza, Egypt.

Email: alaaseufi@yahoo.com, alaaseufi@gmail.com

WAS contact: waspress@worldascience.com

ABSTRACTS & POSTERS

Sequence and phylogenetic analysis of Influenza A/H1N1 and Influenza B viruses in Riyadh, Saudi Arabia

Rasha M. Alzan

Corresponding Author": Rasha M. Alzayed

(E-mail: malzaved @ ju.edu.sa)

Abstract

Introduction

Acute respiratory tract infections (ARTIs) are the major cause of hospitalization and mortality in young children worklivide (1). Of about 200 viruses incriminated in ARTI, the majority of cases were diagnosed as infected by one or more of human respiratory syncytial virus (HRSV), metapneumovirus (MPV), influenza viruses (IAV and IBV), parainfluenza viruses; PIVs (1–3), and coronaviruses (CVs). Influenza is a major respiratory disease that causes significant annual morbidity and mortality. It is usually associated with a total of 250,000 to 500,000 deaths every year worldwide (2-4). The current study was designed to investigate the epidemiological characteristics and genetic diversity of influenza A/H1N1 and IBV during (2014-2020) in Riyadh, Saudi Arabia.

Methodology

Sample pcpulation: (n = 311 clinical samples seasons (2014-2018; 2019/20) were collected from the hospital wards of King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia.

Influenza A/H1N1 and IBV detection: Influenza samples were screened for A/H1N1 and IBV using a One-step RT-PCR kit. Each vinus was taropted with its correlated universal primers. Then, for gene sequencing, the complete HA and NA genes for A/H1N1 and IBV were amplified.

Sequence Data Analysis and Phylogenetic analysis: BioEdit and DNA laser gene were used for sequence editing, alignment, and

The phylogenetic tree was constructed with MEGA 7.

Table (1): List of the primers used in the present study for detection, typing, and sequencing of IAV

Aim	Virus subtype	Primer name	Sequence 3'-5'	Amplicon size (bp)	Reference
LAV detection (Mgene)	IAV	M30F2/08	ATGAGYCTTYTAACCGAGGTCGAAACG	244	
		M264R3/08	TGGACAAANCGTCTACGCTGCAG	244	
IBV detection (NS-2 Gene)	IBV INFB-Univ-F ATGGCCATC	ATGGCCATCGGATCCTCAAC		(5)	
		INFB-Univ-Ra	TGTCAGCTATTATGGAGCTG	238	

Results

Figure (1): Phylogenetic trees of A/H1N1, (A): HA gene and (B): NA gene

Study isolates of seasons are denoted by red. Vaccine strains are shown in green color. Reference str ed by purple.

Table (2): Distribution of clinical samples collected during the study period

	Variables	No. of samples n(%)	No. of Positive Samples			
Item			IAV	A/H1N	A/H3N2	IBV
			<i>n</i> (%)	11(%)	<i>n</i> (%)	11(96)
Season	2014-2015	24(7.7)	0(0.0)	0(0.0)	0(0.0)	2(8.3)
	2015-2016	14(4.5)	14(100.0)	11(78.5)	3(21.5)	0(0.0)
	2016-2017	42(13.5)	42(100.0)	22(52.4)	20(47.6)	0(0.0)
	2017-2018	15(4.8)	15(100.0)	1(6.7)	14(93.3)	0(0.0)
	2019-2020	216(69.5)	17(7.9)	11(64.7)	6(35.3)	4(1.9)

Delaware 19808, USA. with registration No. 3619939 Email: waspress@worldascience.com

Figure (2): Phylogenetic trees of IBV. (A): HA gene and (B): NA gene

Study isola tes of seasons are denoted by red. Vaccine strains are shown in green color. Reference strain is denoted by

Conclusion

This study revealed the dominant circulating influenza virus subtypes and revealed their genetic makeup in Riyadh, Saudi Anabia. Consequently, the currently used flu vaccines in Saudi Arabia may require reconsideration by the inclusion of more relevant vaccines for the effective prevention of influenza infections in the coming epidemic seasons

References

- Lafond K. Estimating the Disease Burden of Influenza from Global Surveillance Data: A Meta-Analysis and Case Study from Indonesia. 2024.
- Wu Y, Wang J, Xue J, Xiang Z, Guo J, Zhan L, et al. Flu-CED: A comparative transcriptomics database of influenza virus-infected human and animal models. Animal Models and Experimental Medicine 2024.
- Tang CY, Ramesh A, Wan X-F. Avian and swine influenza viruses. In: Molecular Medical Microbiology: Elsevier, 2024. pp. 2375–2411.
- Jiang C, Yao X, Zhao Y, Wu J, Huang P, Pan C, et al. Comparative review of respiratory diseases caused by coronaviruses and influenza A viruses during epidemic season. Microbes and Infection 2020; 22: 236–244.

 $_{\sim}$

5. World Health O. WHO Regional Office for Europe guidance for influenza surveillance in humans. 2009

BRSBA2024

Antimicrobial effect of the pygidial gland extract of some coleopteran from Sakaka, AlJouf, Saudi Arabia

Mashael S. H. Al-Shammari'', Fatma H. Galal', Salam AlSharari', Barakat AlRashidi', AlaaEddden M. Seufi' Corresponding Author*: Mashael Al-Shammari (E-mail: <u>mshael.fm44@gmail.com</u>) Department of Biology, College of Science, Jour University, Sakala, Aljent S sudi Arabia. Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.

Abstract

Amr The present study aimed to investigate the antimicrobial effect of the populal gland extract. Methods: Blaps gigas, N. laevoctostriatus and S. acutidens beetles were collected, identified and dissected under a stereo-microscope to show the whole populal gland. The glands were pooled, well-pround by using liquid nitrogen, and extracted using 70% ethanol. Ethanolic populal gland extract was then investigated as antimicrobial agencies (fusarium extractiolosis, Alemana atternata and Faustianium politicatumi, and four batterial species. Sharinoit hybridia political extraction loss, and entrata and Faustatiani regularization and statestical political extractions atternate and scatchers assume politicatumi in the radial growth is of the three funging apecies. This reduction ranged from 43.3 to 75.6% when compared to the concentration of the populal mixture weis e-54.5 sla and S. J. Schort A. J. Schort and Schort a

Introduction

Beefles are the most diverse insect order. A vast array of potential applications was offered by beefles (Guo, 2017). Ground beefles have pygidial glands at their rear end, which can ooze, spray, or pop defensive secretions when attacked. These glands serve as a powerful deterrent against predators. In their mature secretions, certain species of ground beefles even have antibactenial qualities (Nenadic et al., 2017). However, not much research has been done on the pygidial glands in species of of ada fing beefles.

Methodology

Adult beetles were collected manually from various locations within Sakaka city, at Al-Jouf region, between January and December 2023. Beetles were identified using the available taxonomic keys (Aballay et al., 2016). ANTIFUNCAL ACTIVITY

ANTIFURCAL ACTIMITY: Radial mycelial provesh method was used to assess antifungal efficacy of the three selected individual pipolial extracts. Potato dectores agar (PDA) medium were treated with successive concentrations of the pipolial-extract mixture (0.31, AC2, 1.25, 2.5, 3, and 10.09) in order to determine the KSO value of the three *F* verticalized, *A alternata*, and *F*, proliferaturnising the formula: RG 3 e-C-T(-C ³) owhere C is the pathogen radial growth in the control (mm), T is the pathogen

radial growth in treatm ents (mm), and RGI is the percentage decrease of fungal growth in the test. ANTIRACTERIAL ACTIVITY

AN IDBL. LISBAL ACLINIT: Well diffusion method was used on solid Luria-Bettani (LB) agar plates. Pygdial extracts of insects were tested for ambiacterial activity against *E. carotoxora, R. solariserum, S. typhimurum* and *S. aureus:* The measurements were made in triplicate in three distinct fixed directions, and the average, values were tabulated. Centamicin and DMSO were used as positive and negative controls, respectively. STATISTICAL ANALYSIS

The antifungal, and antibacterial data are shown as mean \pm standard deviation. The significance level was obtained by applying the LSD test to the data and performing a one-way ANOVA at a significance level of 0.05

Results

Figure (1): The effect of three different ethanolic pygidial-extracts (8. gigas, N. laevioctostriatus and S. acutidens) on radial growth (mm) of F. verticolloids, A. alternata and F. proliferatum compared to their control.

Fungal strains	Control	Fungal radial growth (mm) (% reduction)			
		B. gigas	N. laevioctostriatus	S. acutidens	
F. verticolloids	9.0	5.1±0.2*	3.6±0.2°	4.1±0.1 ^b	
		(43.3)	(60.0)	(54.4)	
A. alternata	9.0	3.6±0.3*	3.7±0.1ª	2.2±0.0 ^b	
		(60.0)	(58.9)	(75.6)	
F. proliferatum	9.0	4.0±0.3ªb	4.2±0.1ª	3.5±0.2 ^b	
		(55.6)	(53.3)	(66.7)	
Measuring unit			mm		

Table (I): The effect of three different pygidial-extracts (*B. gigas, N. laevioctostriatus and S. acutidens*) on radial growth (mm) of *F. verticolloids, A. alternata* and *F. proliferatum*. Data are means of three replicates = 5D. Different letters in **each row** reveals significant variations at P-0.05.

No.	Concentrations (%)	Radial fungal growth (mm)				
		(% reduction)				
		F. verticolloids	A. alternata	F. proliferatum		
1	Control (0)	9.0±0.0*	9.0±0.0*	9.0±0.0*		
		(0)	(0)	(0)		
2	0.31	8.2±0.3 ^b	7.7±0.4 ^b	7.1±0.2 ^b		
		(11.1)	(14.4)	(21.0)		
3	0.62	7.5±0.2°	7.0±0.2°	6.4±0.5°		
		(16.7)	(22.2)	(28.9)		
4	1.25	6.1±0.5 ^d	6.2±0.1 ^d	5.4±0.3 ^d		
		(32.2)	(31.1)	(40.0)		
5	2.5	5.0±0.2*	5.1±0.1°	4.6±0.2°		
		(44.4)	(43.3)	(48.9)		
6	5	4.5±0.2'	4.2±0.1	3.9±0.2 ^r		
		(50.5)	(53.3)	(56.6)		
7	10	3.6±0.3#	3.3±0.2*	3.0±0.2#		
		(61.1)	(63.3)	(66.7)		
	IC., (%)	4.54	5.3	5.2		

Table (2): Evaluation of different concentrations of the pygidial-extract mixture against mycelial growth of three phyto-pathogenic fungi, and the ICS0 value of each fungus. Data are mean of three replicates ± 50. The values with the same letters in **each column** are not significantly different from each other at P < 0.05.

ANTIBACTERIAL ACTIVITY

Figure (2): The effect of pygidial-extracts of *B. gigas* (A), *N. laevioctostriatus* (B) and *S. acutidens* (C) on bacterial growth of two pathogenic human bacteria (*S. typhimurium* and *S. aurus*) and two pathogenic plant bacteria (*S. carotovorand R. solamiserum* compared to their not-treated control.

Conclusion

From this study it could be concluded that the three beetles exhibited a strong antifungal, but not antibacterial activity when compared to controls. Future extensive research is recommended on the antibacterial activity when compared to con potential medicinal use of beetles' extracts.

References

- 1. Hoffman, KH. (2014). Insect molecular biology and ecology. Boca Raton: CRC Press; 2014.
- Guo, Z. (2017). The modification of natural products for medical use. Acta Pharmaceutica Sinica B, 7(2), 119–136. doi:10.1016/j.apsb.2016.06.003.
- a, reg., ref. ref. ed. working, paper and a second seco
- Aballay, F., Flores, G., Silvestro, V., Zanetti, N. (2016). An Illustrated Key to, and Diagnoses of the Species of Tenebrionidae (Coleoptera) Associated with Decaying Carcasses in Argentina. Annales Zoologici 66(4):703-726.

Computer-aided discovery of 2,7-dimethylnaphthalene derivatives from J. curcas leaves extract as potential anti-Pf CK2 and Pf CLK1: a combination of molecular docking, druglikeness, MMGBSA, and molecular dynamic simulation analyses Asma'U Mahe^{1,2,*}, Abdullahi A. Imam¹, Khadija I. Baiwa³,

Adam A. Adam² and Suleiman O. Alakanse⁴

1. Bayero University, Kano. Nigeria

2. Federal University, Dutse, Nigeria

3. Kano State College of Education and Preliminary Studies, Kano State, Nigeria

4. University of Ilorin, Nigeria

*Correspondance: Asma'U Mahe, Email: maheasmau@gmail.com

ABSTRACT

Malaria, caused by five Plasmodium species, is still a major concern in many regions of the world, accounting for roughly 247 million clinical cases and 619,000 fatalities in 2021, primarily among children under the age of five and expectant mothers in Sub-Saharan Africa. There is growing concern that resistance to artemisinin-based medicines will extend to additional locations, jeopardizing the efficacy of this standard therapy. Kinases, both protein and lipid, are a class of molecular therapeutic targets that have been widely studied in a variety of disease areas, particularly oncology. In this study, 23 compounds from GC-MS phytoconstituents characterization of partially purified fraction 1 and 2 of J. curcas leaves extract from our previous work were retrieved and computationally docked into the binding site of Pf CDPK1 (3Q5I), Pf CDPK2 (4MVF), Pf CDPK4 (4QOX), Pf CK2 (5XVU), Pf CLK1 (3LLT), Pf MAPK2 (3NIE), and Pf PK7 (2PMN) which are

all Plasmodium protein kinases targets for malaria. The top binders were revalidated and subjected to druglikeness properties. To completely analyze the complex stability and structural flexibility, as well as to appreciate the protein-ligand interactions, the best ligand's ligandreceptor complexes (Pf CK2 - Compound 124 and Pf CLK1-Compound 81) were subjected to molecular dynamics simulation. In addition, the MMGBSA method and additional evaluations of the simulation findings were performed which included pharmacokinetic and pharmacodynamics analysis. Findings in this study indicated good dynamics and stability of the complexes within the binding sites of Pf CK2 and Pf CLK1, thus, a possible anti-plasmodium activity. However, additional experimental studies are required to ascertain the claims in this study.

Keywords: Malaria; *Plasmodium* species; Protein kinases; Druglikeness properties; *Jatropa curcas*

Antimicrobial peptides and therapeutic applications Shaymaa H. Mahmoud^{1,*}

1. Menoufia University	, Egypt			
*Correspondance:	Shaymaa	Н.	Mahmoud,	Email:
drshaymaahussein@gr	nail.com			

ABSTRACT

The first line of defense of insects against pathogens and parasites is the cuticle. Once this barrier has been breached, a complex interaction of innate humoral and cellular immune reactions is induced in both tissues and haemocoel, which results in the rapid elimination of microorganisms. Insects defend themselves against infectious microorganisms by a sophisticated set of reactions: (A) Haemocyte mediated cellular immune response (1) phagocytosis and encapsulation by blood cells, (2) proteolytic cascades leading, in particular, to

coagulation and melanization; (B) Humoral defences (1) Secretion of a battery potent antimicrobial peptides. In the present review, discovery, definition, sources, classification, structure and characteristics, methods of induction, mode of action, therapeutic applications, and limitations of using AMPs are discussed.

Keywords: Antimicrobial peptides; innate immune reactions; phagocytosis and encapsulation; coagulation and melanization

Study on the role of albendazole in physiological and histological changes in farm chicken infected with environmental parasites in Dawmat AlJandal, AlJouf, Saudia Arabia

Hanan Hamza^{1,*}

1. Biology Department, College of Science, Jouf University, Saudi Arabia *Correspondance: Hanan Hamza, Email: httaher@ju.edu.sa

ABSTRACT

Farm birds, or chickens, are susceptible to a variety of parasite infections that are spread by people. The antiparasitic medication of choice is albendazole (ABZ). This article's main objective is to examine the effects of ABZ on the intestine and hepatic tissue of farm hens. ABZ recorded an egg reduction rate (ERR) of almost 100% and a cure rate (CR) of 96% (egg negative conversion rate, or NCR) with 400 mg given all at once. A total of 20 farm chickens were divided into 4 groups (5 chickens/ group): (G1) non-infected, untreated gro (G4) (17.3%) compared to those infected only. AST levels showed a significant increase in groups (G2) and (G4) compared to the normal control group. The percentage increase reached 124.65% and 256.33%, respectively at P<0.001 and P<0.01. While (G3) treated with albendazole recorded a decrease rate of 51.85%. AST levels in the plasma of groups (G3) and (G4) recorded a significant increase compared to the infected control group (G2). An increase in ALT was recorded in groups (G2) compared to the control group (G1). The percentage increase reached 127%. An increase in ALT was recorded in groups (G2) and (G4) compared to the normal group (G1). The percentage increases reached 127% and 48.03%, respectively. The histological study of both the liver and intestines demonstrated the pathological effect of the tissues treated with albendazole, and on the contrary, the treatment affected the decrease in the number of worms in the intestines. The study indicates that treatment with albendazole for chickens infected with various parasites led to a decrease in the number of

worms. It also led to an increase in the values of liver enzymes and some abnormalities in both the liver and intestines.

Keywords: Albendazole; liver enzymes; pathological effect; cure rate; egg reduction rate; intestinal tissue; liver toxicity; drug resistance

Effect Of *Mesembryanthemum* sp. On The Date Pest *Oryzaephilus surinamensis* (Saw Toothed Grain Beetle) Fatma H. Galal^{1,*} Huda Al-Ruwaili¹, Sarah Al-Anazi¹,

Shahed Al-Shammari¹, Nedal M. Fahmy^{2,3} and AlaaEddeen M. Seufi⁴

1. Biology Department, College of Science, Jouf University, Saudi Arabia

2. Pest Physiol. Dept., Plant Protection, Res. Instit., Agricul. Res. Center, Egypt.

. Univ. College of Tayma, UT, Saudi Arabia

4. Entomology Department, Faculty of Science, Cairo University, Egypt. ***Correspondance:** Fatma H. Galal, Email: fatmahgalal@yahoo.com

ABSTRACT

The saw toothed grain beetle, Oryzaephilus surinamensis, is a destructive stored product pest which diminishes the yield, quantity, and quality of many stored products. This study was designed to investigate effect of the wild plant, Mesembryanthemum sp. Powder on the adult O. surinamensis. Beetles were collected from infested dates in Sakaka, Saudi Arabia, and identified, morphologically. Beetles were exposed to the Mesembryanthemum powder for varying times. Results demonstrated that the daily mortality of adult O. surinamensis was significantly increased (P > 0.05)when compared to the control, throughout the experimental period. Additionally, the median mortality time (IT₅₀) of *Mesembryanthemum* on adult O. surinamensis was 3.7 days. These findings suggested that the usage of Mesembryanthemum powder in fighting stored product insects is a promising eco-friendly approach for managing these pests. Incorporating this natural powder into date storage practices could empower farmers and businesses to minimize losses inflicted by O. surinamensis. Further optimize crucial the application research is to methodology and to confirm long-term efficacy and safety.

Keywords: Oryzaephilus surinamensis; Mesembryanthemum sp.; Mortality; Bio-pesticides; Eco-friendly

Biosynthesis of Ag nanoparticles and possible role in extending the shelf life for various seeds Shaima M.N. Moustafa¹, Riman S. El-Talib², Bashayr F.L. Alsabilah³ and Entesar M. Aloqayel⁴

1. Biology department, College of Science, Jouf University, Saudi Arabia

2. Al-Andalus School, Saudi Arabia (Student)

3. Ryiadh Al-Mawaheb School, Saudi Arabia (Teacher)

4. Talented Department, Al-Jouf Region, Saudi Arabia

. *Correspondance: Shaima M.N. Moustafa, Email: shaima@yahoo.com

ABSTRACT

Background: The most important causes of damage to seeds and grains are the growth of microorganisms, insect infestation, attack by rodents, and others, which result in a loss in nutritional value, as well as a loss in the quality of seeds and grains, and also a loss in seeds, which is linked to a decrease in the germination rate. Mycotoxins, of all kinds, are considered one of the most dangerous and important problems facing humans because they cause significant health damage that is difficult to treat as a result of eating food contaminated with them or with the organisms that secrete them. **Aim:** The aim of this study is to find preventive solutions that can reduce or prevent the spread of mold in grains and crops during the storage

period. This study investigated the impact of AgNPs on seed germination rate and seedling growth. Methods: This can be achieved by biosynthesizing silver nanoparticles using olive kernels, which can effectively combat the causes of mold without compromising the efficiency or quality of grains and food products. Results: The results showed that the seeds coated with AgNPs@OSE had an antifungal effect on the tested fungi: Alternaria porri (MT550031), Asperigillus flavus (MT550030), A. niger (MW596373), Fuserium oxysporium (MT550034), and Candida parapsilosis (MW960416). It was also noted that the Ag-seed coat did not affect the growth and germination of the seeds, as the coating helped the (Cucumis sativus) cucumber seeds resist the growth of fungi. The seed germination was not affected when the optimum conditions of germination were available. It is also resistant to mold, and the effect was clear when compared to the control. The germination rate of cucumber seeds coated with AgNPs@OSE was 100%. Additionally, the results indicated that AgNPs@OSE had no toxic effect on cucumber seed germination. Protecting the embryo from hazardous external influences is a major function of the seed coat. Selective permeability is possible in seed coverings. Conclusion: The Ag-seed coat of the seed protected them from harmful fungi that may infect them. There was no impact on germination rate or selective permeability. Thus, the Ag-seed coat might increase the shelf life of the seeds.

Keywords: Cucumis sativus; olive seeds; biosynthesis of

silver nanoparticles; seed growth and germination; toxicity

The influence of copper and silver interlayers on the antifungal properties of zinc telluride films Mohamed F. Hasaneen^{1,2,*}

1. Physics department, College of Science, Jouf University, Saudi Arabia

2. Physics department, Faculty of Science, Sohag University, Egypt

*Correspondance: Mohamed F. Hasaneen, Email: mfahmad@ju.edu.sa

ABSTRACT

Background: This study investigates the antifungal efficacy of zinc telluride (ZnTe) nanocomposites enhanced with silver (Ag) and copper (Cu) nanoparticles.

Aim: To evaluate the antifungal efficiency of ZnTe nanocomposites with Ag and Cu nanoparticles and to understand their mechanisms of action against Candida albicans. Methods: The antifungal efficacy of ZnTe/Ag (ZAZ) and ZnTe/Cu (ZCZ) nanocomposites was assessed by determining the minimum inhibitory concentrations (MICs) for C. albicans. Scanning electron microscopy (SEM) was used to analyze morphological changes in treated cells. Results: ZAZ exhibited the most pronounced antifungal efficacy, with a MIC of 0.3 mol/L against C. albicans, while ZCZ showed a slightly increased MIC of 20 efficacy. mol/L. lower ZnTe alone indicating demonstrated the lowest antifungal activity among the compounds studied. The high antifungal activity of ZAZ is attributed to the adhesion of ZAZ nanoparticles to microbial surfaces, disrupting cellular membranes, essential proteins, and altering microbial respiratory chains, which affects mitochondrial function by impairing the electron transport chain, leading to reduced ATP production. The study also revealed that Ag and Cu layers in ZnTe nanocomposites significantly inhibited C. albicans growth, with inhibition values of 85% for ZAZ and 70% for ZCZ, compared to the control sample's inhibition value of 20%. The antifungal action of Ag nanoparticles is linked to their infiltration of cellular structures, production of reactive oxygen species (ROS), and disruption of cell proteins. SEM analysis revealed substantial morphological changes and increased cell debris in treated C. albicans cells, highlighting the increased permeabilization of cell

membranes by Ag nanoparticles. **Conclusion**: These findings contribute to the understanding of the potential use of Ag and Cu nanoparticles in ZnTe nanocomposites for antifungal applications, particularly against *C. albicans*. The study underscores the need for further research into their mechanisms and clinical applications.

Keywords: Antifungal; ZAZ nanoparticles; SEM

Acknowledgments

The WAS LLC. and University of Vienna would like to acknowledge their thanks to everybody who contributed to the success of the 5th International Conference on Biological, Biomedical Sciences, Biotechnology and Applications (BBSBA2024), especially the members of the organizing committee for their endless efforts during the preparation and employment of the conference. Gratitudes should extend to keynote speakers, presenters, and all attendees.

Herein, we take the leed to invite all of you to prepare your valuable contributions to be shared in the 6th International Conference on Biological, Biomedical Sciences, Biotechnology and Applications (BBSBA2025), planned to be held by the next July 2025 in Vienna, Austria.

Thank you for sharing our success, and we are expecting the continuity of your cooperation. Additionally, we are waiting to receive your valuable contributions and see you in Vienna, Austria the next July 2025.

Sincerely Yours; BBSBA2024 Organizers