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Abstract: Reliable recognition of white blood cells is an essential step in the diagnosis of several 9 
types of cancer. Therefore, the segmentation of white blood cells plays an essential role and is an 10 
important part of the medical diagnostic system. Manual cell diagnosis involves doctors visually 11 

examining microscopic images to detect any cellular abnormalities. This step is costly and time-12 
consuming. An automated system based on white blood cell identification provides a more accurate 13 
result than the manual method. Image segmentation is one of the crucial contributions of a deep 14 
learning community to the medical field. In this paper, we demonstrate how the U-Net type 15 

architecture can be improved by the use of the pre-trained encoder, a comparison of several efficient 16 
methods for automatic recognition of white blood cells using the original U-NET, different pre-17 
trained classification networks are used as the backbone to obtain better performance. The 18 
architecture of RESNET-50 obtains the best segmentation results on testing data for automatic 19 
recognition in cytological images. 20 

Keywords: white blood cells segmentation, deep Learning, transfer learning, U-NET, Loss Function, 21 
cytological image’s dataset.  22 

 23 

1. Introduction 24 

The expertise of spinal cord smears represents the cornerstone of hematological diagnosis. 25 
Indeed, the bone marrow is made up of stem cells from which blood cells (WBC) are produced, and 26 
in the event of an abnormality in one of the components of the blood (in the event of a deficiency or 27 
proliferation) the cells of the bone marrow can in be the cause. Unlike the blood smear, it is sufficient 28 

to focus on a microscopic field which seems adequate (many cells, well spread out and well stained) 29 
and to carry out the count of all the cells present in this field; then move to another field that seems 30 
adequate, and so on [1]. Clearly, this test is an important indicator in the detection of certain blood 31 
abnormalities. Blood morphology is made up of three elements: cells such as red blood cells 32 
(erythrocytes) and white blood cells (leukocytes) as well as blood platelets (not considered cells). The 33 

expression of the shape and number of white blood cells (WBC) has many quantitative and 34 
informative clues [2]. For example, increasing or decreasing white blood cells is very critical and may 35 
receive medical attention. 36 

Within the framework of medical image analysis techniques, the segmentation of white blood 37 

cells is a key problem that we will refer to in this work. The segmentation of microscopic images uses 38 
information from the image (color, grayscale and spatial) to delineate different anatomical structures, 39 
including white blood cells (WBC) which are made up of nucleus and cytoplasm. 40 

Several research works have been carried out on the semantic segmentation of blood stem cells 41 
from bone marrow [3–5]. In this work, we focus on citing the works and methods that have been 42 

proposed and applied to the real image of the cytological image’s dataset [6] on which our study is 43 
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based. These microscopic images of blood stem cells of the bone marrow were collected within the 44 

Haemobiology Service, University Hospital Center of Tlemcen, Algeria, on slides staining type MGG 45 
(May Grunwald Giemsa).  46 
Research works in the literature can be divided into four segmentation approaches: 47 

Morphological approaches:  48 

Benazzouz et al. [6] proposed an automated identification of plasma cells in bone marrow images. 49 
The steps of their segmentation model were divided into two phases. The first one used Otsu 50 
thresholding to extract the nucleus (green label) and the second one used the region growing on the 51 
obtained nucleus to delineate the cytoplasm. After segmentation, a classification of the obtained 52 
globules is used to count them. This method showed promising results when extracting the white 53 

blood cell named Leucocyte. Besides, segmentation of bone marrow images based on the Watershed 54 
transformation was proposed by Baghli et al. [7]. Its principle is to consider the image as a topographic 55 
map where the user must define starting points for the algorithm to flood the basins (objects to be 56 
detected) until there is a meeting point between the different basins (regions). Then the regions are 57 
merged by integrating the uncertainty on the color through the theory of evidence. In the end, the 58 

classification of the obtained globules is performed by three classifiers: SVM, Knn, and the decision 59 
tree. A Multi Features Based Approach for White Blood Cells Segmentation and Classification in 60 
Peripheral Blood and Bone Marrow Images was proposed by Benomar et al. [8]. It is a system that 61 
allows segmentation and differential counting of white blood cells, the process begins by highlighting 62 

WBCs by the stretch decorrelation method. Then, Otsu's thresholding is applied to the edited image 63 
using a color transformation. Segmentation is performed by Watershed to determine the boundaries 64 
of the blood cells followed by cleaning the image to remove false positives. At the end of this 65 
segmentation, a color scheme is used to separate the nucleus from the cytoplasm. 66 

Pixel-based Classification approaches:  67 

Pixel-based classification involves classifying each pixel in the image to a region class by 68 
machine learning approaches. Indeed, these methods perform a separation in the characteristic space 69 
of each pixel, the representation space can be constituted by the color or texture information so that 70 
a projection in this space achieves linear or non-linear boundaries between regions of the image. For 71 
white blood cell segmentation, Settouti et al. [9] proposed an automatic method based on region 72 

growth by classifying neighboring pixels from the pixels of interest in the image with minimal 73 
intervention by the expert. The points of interest are detected by the ultimate erosion morphological 74 
operator and two classifiers are applied for classification: Decision Tree (mono-classifier) and 75 
Random Forest (Multi-classifiers / ensemble method). We can say that the main limitation of this 76 

method is the long processing time, which makes it useless in a big data problem. In this case, two 77 
solutions have been proposed to resolve this problem, which is: Involving instance selection 78 
algorithms for a pixel reduction process that can reduce the cost of storing and computing image 79 
segmentation by selecting relevant pixels to the pixel-based classification task. Saidi et al. [10] 80 
proposed the EMIS Algorithm, an instance selection approach based on ensemble methods that use 81 

the ensemble margin as a selection criterion to overcome the problem of sensitivity to noise. 82 
Subsequently, in addition to this time saving, in another work, Settouti et al. [11] identify the relevant 83 
color spaces, which provide more information in the WBC segmentation process and eliminate the 84 
redundant and unnecessary characteristics of all images feature extraction. They proposed the IVsel 85 
algorithm “Instance & Variable selection”, which highlights the importance of selecting only the most 86 

useful instances and variables to separate the different ROIs.  87 

Super-pixel-based Classification approaches:  88 

The current trend is towards the application of super-pixel classification which has great 89 
potential in the segmentation of color images in the segmentation process. It is a clustering technique 90 
that allows the image to be subdivided into k homogeneous clusters allowing to accelerate and 91 
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improve the quality of segmentation. Bechar et al. [12] developed a segmentation procedure based on 92 

super-pixel classification, where characterization based on image color information is done at the 93 
super-pixel level. They performed different ways of characterization to study the influence of color 94 
normalization, color information, and characterization technique on the segmentation results of 95 
white blood cells. The findings indicate that color normalization provides characterization precision 96 

and significant segmentation improvements. Besides, Bechar et al. [13] demonstrated the application 97 
potential of semi-supervision in the segmentation of cytological images and the recognition of white 98 
blood cells. A comparison is carried out between the multi-classifiers and the mono-classifier in 99 
supervised mode (random forests vs. Decision tree) and semi-supervised mode (co-FOREST vs. Self-100 
learning SETRED), the application of algorithms semi-supervised learning have shown their 101 

superiority over supervised learning. 102 

Deep Learning approaches:  103 

The advent of deep learning has eased the heavy lifting of the physician by making it possible 104 
to make accurate diagnoses in a short time. Particularly, Convolution Neuronal Networks (CNNs) 105 
have proven to be very robust in solving image classification problems and several architectures have 106 

been proposed to increase their performance, notably for microscopic images of the blood cells of the 107 
bone marrow. The success of deep learning methods in performing image classification has extended 108 
their use to solve more complex tasks including semantic segmentation by interpreting it as either a 109 
regression or discrimination problem. For the same case application of our work, recently, Khouani et 110 

al. [14] have conducted a study of deep learning methods for the automatic segmentation of regions 111 
of the nucleus and cytoplasm in cytological images. The proposed model is based on the use of Mask 112 
R-CNN with an improvement in the architecture and the stages of pre and post-processing. The 113 
results obtained are very promising and show the power of deep learning methods in the field of 114 
image processing. 115 

In summary, as with the previously mentioned approaches, classical segmentation methods 116 
have major limitations that do not favor their deployment in clinics to perform critical tasks. If an 117 
approach is efficient, it requires a significant amount of execution time or human interaction. If the 118 
approach is automatic and does not require a learning mechanism, it is very sensitive to noise in the 119 
image. For methods requiring a learning mechanism, a detection phase is almost mandatory because 120 

the performance of the segmentation is closely linked to it. Moreover, the choice of the features to be 121 
extracted is problematic because even this restricts the scope of the method to a specific type of image 122 
where the classifier learns a feature of the structure to be segmented and not its global representation. 123 
This also limits the application of this type of method in the case where the anatomical structures are 124 

deformed. The success of deep learning (DL) lies mainly in its deference to traditional machine 125 
learning (ML) approaches. Indeed, ML models improve gradually but lack precision so the user must 126 
guide him by solving the problem explicitly, unlike DL which does it and can dispense with the 127 
feature extraction phase. Deep Learning has undergone a revolution over the past few years and an 128 
infinite number of architectures and models have been produced. Most of these models gave more 129 

than satisfactory results. 130 
Through the literature review, we note that semantic segmentation of blood stem cells from bone 131 

marrow arouses a lot of interest within the scientific community. Classical approaches have provided 132 
initial solutions for WBC segmentation but with the shortcomings associated with each of the 133 
methods employed. Deep learning-oriented approaches have eliminated most of these limitations, 134 

but it nevertheless has several interrogations. First, the different architectures and models that exist 135 
make it difficult to choose the right network. Second, the hyperparameters of the network are difficult 136 
to evaluate a priori. Indeed, the number of layers, the number of neurons per layer, or the different 137 
connections between layers are crucial elements and essentially determined by a good intuition or by 138 
a succession of tests/calculation of errors (which is costly in time). The number of training samples is 139 

also a determining factor, and it often happens that this is too small compared to the number of 140 
parameters (weight) of the network. There are solutions such as artificially increasing their number 141 
or even reducing the number of free parameters (by pre-learning the first layers for example).  142 
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In this work, we have suggested a deep learning approach using U-Net to solve the problem of 143 

automatic recognition in cytological images, eight pre-trained encoder networks of U-Net models 144 
were appraised in the same experimental environment and with the same data. The distinction 145 
between white blood cells (leukocytes) in microscopic images of bone marrow and peripheral blood 146 
allows for accurate diagnoses of different cancers using a cost-effective method for fast, reliable, and 147 

efficient detection of nucleus and cytoplasm, which are clinically very important. We firstly exposed 148 
the most powerful structure for the encoder of U-Net in comparison to multiple deep learning 149 
models. Secondly, we have performed semantic segmentation with the best model, then we show the 150 
performance of the best model with examples. Finally, a comparison with other models is made. 151 

The paper is organized as follows: materials and methods for the semantic segmentation of 152 

blood stem cells from bone marrow are presented in section 2. In section 3, we describe the cytological 153 
images dataset used in this study, with the experimental setting for the comparative study. In section 154 
4 experimental results are discussed. Finally, conclusions from this study and possible future works 155 
are presented in section 5.  156 

2. Materials and Methods 157 

There are several deep learning architectures that can solve this semantic segmentation problem. 158 
The general semantic segmentation network consists of an encoder and a decoder, U-Net 159 
architectures are normally considered as one of the most powerful tools for segmentation of 160 
biomedical images. We used different pre-trained CNN architectures as backbones of U-Net, and 161 

passing them to the U-Net decoder, we show how the performance of U-Net can be easily improved 162 
by using these backbones with pre-trained weights. 163 

2.1. The model: 164 

U-net [15] is an optimized semantic segmentation network based on Fully Convolutional 165 
Network (FCN). The architecture consists of a contracting path (encoder) to capture context and a 166 

symmetric expanding path (decoder) that enables precise localization and improves performance on 167 
segmentation tasks. We have chosen this model because the emergence of U-Net has brought great 168 
prospects for deep learning in the field of medical image analysis. It builds on previous convolutional 169 
networks to work more efficiently with fewer training images and to achieve more efficient 170 
segmentation. We used batch normalization before convolutional layers for internal covariate shift to 171 

achieve better performance and accelerate convergence [16]. Also, a dropout layer is utilized in the 172 
structure to reduce over-fitting problems. 173 

2.2. Data augmentation 174 

U-Net is capable of learning from a relatively small training set. In most cases, data sets for image 175 

segmentation consist of at most thousands of images, since manual preparation of the masks is a very 176 
costly procedure, so we used data augmentation. Data augmentation is essential to teach the network 177 
invariance and robustness properties. Using our small dataset of images and masks, we can generate 178 
new images that will be as insightful and useful to our model as our original images.  Random 179 
transformations on the input images were used in the database augmentation. We randomly rotated 180 

inputs vertically and horizontally, then zoomed them. We also randomly increased and decreased 181 
the brightness of the images because the colour variation in the images was a significant segmentation 182 
complication due to the quality of the captor used during image capturing. 183 

2.3 Transfer learning technique and training models: 184 

Transfer learning is a popular approach in deep learning where pre-trained models are used as 185 

the starting point on computer vision processing tasks. It reduces training time considerably and 186 
leads to effective models [17,18] even with a small training set like ours.  187 

We used the MobileNet [19], VGG [20], RESNET [21]) deep neural network as backbones (an 188 
encoder) in our U-Net network, the residual blocks in RESNET with skip connections helped in 189 
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making a deeper and deeper convolution neural network and achieved record-breaking results for 190 

classification on the ImageNet dataset. All mentioned backbones weights are pre-trained on The 191 
ImageNet data set [22], the advantage of doing so is to shorten the learning procedure, which is done 192 
by the last few layers of the network, to speed up convergence and to achieve high performance as 193 
compared to a non-pre-trained model. We use these backbones as the first half (encoder) of U-net 194 

[23]. Then, we train the decoder layers with our own augmented dataset. It helps save the training 195 
procedure and enhances the advantage of U-net's ability to learn from small data.  196 

During the convolutional neural network training, validation is used to detect when overfitting 197 
starts, training is stopped when performance on the validation set starts to degrade in order to avoid 198 
the overfitting on the training data (“early stopping”) [24]. 199 

3. Results 200 

3.1. The cytological images dataset 201 

The dataset belongs to the field of hematology. It contains microscopic images of the blood cells 202 
of the bone marrow which were collected at the Haemobiology Service, University Hospital Center 203 
of Tlemcen, Algeria by Benazzouz et al. [6]. This dataset contains 87 images acquired in the LEICA 204 

environment (camera and microscope) in BMP format of size 1024x768 and magnification x100. 205 
Figure 1 shows some images of this dataset in the top and their Ground Truth (bottom) where the 206 
expert selects 4 regions: nucleus, cytoplasm, red blood cells and plasma.  207 

 208 

  

Figure 1. Samples of cytological images dataset (A) with the ground truth (B), where: (a) Nucleus, (b) 209 
cytoplasm, (c) red cell and (d) plasma. 210 

The protocol for obtaining these images is known as the spinal cord smear (myelogram). It 211 
consists of spreading bone marrow on a microscopic slide to be able to study the morphology of the 212 

cells present as well as their number after being stained and fixed using the microscope. We have 213 
chosen randomly 80% of the images for training and validation, then the rest for testing. For the 214 
optimal configuration for our machine we have resized the images to 256x256 215 

3.2. Experimental setting 216 

All experiments are performed on a computer with GeForce NVIDIA GTX 1060 graphics cards. 217 

The proposed network models were implemented with python and TensorFlow v 2.2.0. We trained 218 
our models using Adam gradient-based optimization algorithm with a learning rate of 1e-3, it is a 219 
popular algorithm in the field of deep learning because is computationally efficient and has small 220 
memory requirements [25].  221 
We have determined the early stopping criterion at 10 training epochs both in the training and 222 

validation phase for each architecture. 223 
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Loss function: 224 

Since we can consider the image segmentation task as a pixel classification problem, the choice 225 
of the loss function is very important while designing complex image segmentation. we used both 226 
cross-entropy (CE) eq. (1) and Dice loss (DL) eq. (2) functions, then compared their performances to 227 
find the best metric with our database. 228 

Categorical Cross Entropy loss [26]: 229 

𝐶𝐸(𝑦, �̂�) =  −(y log(�̂�) +  (1 −  y)log(1 −  �̂�)) (1) 

Here, �̂� is the predicted value by the prediction model and 𝑦 is the ground truth. 230 
 231 
Dice Loss [27]: 232 

𝐷𝐿(𝑦, �̂�) = 1 −
2𝑦�̂� + 1

𝑦 + 𝑝 + 1
 (2) 

Here, 1 is added in numerator and denominator to ensure that the function is not undefined in edge 233 

case scenarios such as when  𝑦 = �̂� = 0 . 234 
 235 
3.3. Evaluation Metrics 236 

We have performed several experiments using data augmentation and Transfer learning for different 237 
encoders pre-trained on ImageNeT (MobileNet, MobileNet V2, RESNET 18, RESNET 34, RESNET 50, 238 

RESNET 152, VGG 16, VGG 19), all images have a size of 256x256. 239 
The classification performances are evaluated based on the Precision eq. (3) and the most used metrics 240 
for semantic segmentation F1 Score (Dice Coefficient) eq. (4). 241 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 2 ∗

𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

Where: 242 

• True positives (TP): The intersection between segmentation and ground truth  243 
• False positives (FP): Segmented parts not overlapping the ground truth   244 
• False negatives (FN): Missed parts of the ground truth  245 
• True negatives (TN): Part of the image beyond the union between segmentation and ground 246 

truth. 247 

Table 1. Performances, Epochs using Dice loss and Cross-entropy loss for each backbone. 248 

Encoder Metrics 

Nucleus Cytoplasm Epochs 

CrossEntr 

Loss 

Dice 

Loss 

CrossEntr 

Loss 

Dice 

Loss 

CrossEntr 

Loss 

Dice 

Loss 

U-NET  
Precision 0,9798 0,9796 0,8853 0,8754 

53 43 
F-score/Dice 0,9547 0,9496 0,9271 0,9192 

MOBILNET 
Precision 0,9360 0,9863 0,8852 0,8639 

14 23 
F-score/Dice 0,9434 0,9406 0,9152 0,9192 

MOBILENET V2 
Precision 0,9936 0,9562 0,8600 0,8672 

29 49 
F-score/Dice 0,9360 0,9450 0,9173 0,9123 

RESNET 50 
Precision 0,9800 0,9900 0,8891 0,8816 

13 37 
F-score/Dice 0,9577 0,9419 0,9314 0,9214 

VGG 19 
Precision 0,9664 0,9806 0,8877 0,8703 

38 52 
F-score/Dice 0,8154 0,9282 0,9206 0,9178 
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VGG 16 
Precision 0,9105 0,9701 0,8872 0,8554 

27 69 
F-score/Dice 0,8707 0,9205 0,9010 0,9079 

RESNET 152 
Precision 0,9440 0,9878 0,8934 0,8720 

24 44 
F-score/Dice 0,9477 0,9400 0,9226 0,9231 

RESNET 34 
Precision 0,9754 0,9878 0,8803 0,8814 

16 41 
F-score/Dice 0,9485 0,9493 0,9252 0,9284 

RESNET 18 
Precision 0,9202 0,9807 0,8921 0,8871 

22 36 
F-score/Dice 0,9269 0,9435 0,9111 0,9284 

Bold numbers represent the best results using F-Score 

4. Discussion 249 

Results in Table 1 demonstrated that the use of Standard U-Net and RESNET-50 gives the best 250 

performance, but RESNET-50 converges to better results in only 13 epochs using the Cross-entropy 251 
loss function, Dice score has achieved a promising result for nucleus and cytoplasm segmentation: 252 
0,957 and 0,931 respectively. We remind that we have determined the early stopping criterion at 10 253 
training epochs for each architecture if the loss function does not improve after 10 iterations, because 254 
too many epochs can lead to overfitting of the training dataset.  255 

Table 2. Performances, using Dice loss and Cross-entropy loss for RESNET-50 encoder.  256 
 

Nucleus Cytoplasm 

CrossEntr Loss Dice Loss CrossEntr Loss Dice Loss 

Precision 0.9800 0.9900 0.8891 0.8816 

Sensitivity 0.9365 0.8982 0.9780 0.9651 

Specificity 0.9994 0.9997 0.9942 0.9938 

F-Score/Dice 0.9577 0.9419 0.9314 0.9214 

IoU/Jaccard 0.9189 0.8902 0.8717 0.8543 

The specificity using RESNET-50 pre-trained encoder is practically equal to 1, this means the 257 

system avoid false alarms, the clinician is more assured in the automatic system. 258 

 259 

 

(Image 1)  

(Image 2)  
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(Image 3)  

(Image 4)  

(Image 5)  

 Input image Expert Our model 

Figure 2. Results of automatic segmentation by U-NET using RESNET-50 Encoder 260 

We randomly select five images from the test database (Figure 2) to discuss the performance of 261 
our semantic segmentation model. We overlapped the mask on the original image to have better 262 
visibility of the segmentation quality. We note that the separation of cytoplasm and nuclei is almost 263 

identical to the expert's labeling, also the model can distinguish white blood cells from red blood 264 
cells, for example in Image 4 (Figure 2). 265 

We find that the color variation in the images does not affect the segmentation, this is partly due 266 
to data augmentation and to be precise, the fact of increasing and decreasing the brightness. 267 

These results can affirm the effectiveness and great speed of response compared to other 268 
methods (small number of epochs) using transfer learning (with pre-trained weights on ImageNet). 269 
The use of RESNET-50 as backbone gives the best results, we can explain this by using a deeper 270 
convolution network through series of residual blocks (with skip connections) to help us addresses 271 
the vanishing gradient problem. 272 

Having demonstrated the superiority of the RESNET-50 as a backbone model over other models, 273 
in Table3, we will now briefly compare the results we obtained in this study with those of previous 274 
works. 275 

Table 3. Comparison with related works on WBC segmentation method with the same dataset. 276 

Authors Model/Algorithm 
Nucleus Cytoplasm 

Precision F-Score/Dice Precision F-Score/Dice 

Benazzouz et al. [6]  Otsu + classification 95.02 - 84.53 - 

Baghli et al. [7] Evidence theory  95.90 - 88.4 - 

Benomar et al. [8] Otsu + watershed 96.87 - 92.50 - 

Settouti et al. [9] Pixel-based approach 99.12 0.9532 97.15 0.8982 
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Saidi et al. [10] EMIS 99.05 0.88 95.05 0.61 

Settouti et al. [11] IVsel 99.10 0.84 94.99 0.4518 

Our Approach U-Net RESNET-50 98.00 0.9577 88.91 0.9314 

 277 

If we compare the performances of the quoted works in Table 3, we can establish the following 278 
remarks: 279 

- The previous results of Settouti et al. [9] for nucleus recognition were better than ours, but our 280 
approach gave the best results according to the Dice coefficient for nucleus and cytoplasm 281 

segmentation which demonstrates that our model has a higher sensitivity in detecting the relevant 282 
objects. 283 

- Furthermore, the use of the U-Net architecture combined with the pre-trained RESNET-50 284 
encoder allowed for fast learning and segmentation. In contrast to the limitations of other traditional 285 
methods that require long processing times [9].   286 

5. Conclusions 287 

This paper reports important results achieved using different models for the encoder part of the 288 
U-Net for the automatic recognition of nuclei and cytoplasm regions in cytological images to help 289 
experts in medical diagnosis, sometimes even an expert might make a mistake in this so automating 290 
the full pipeline. The objective is to automatically detect each object in the image and classify it as a 291 

nucleus or a cytoplasm while forming a binary mask to perform the segmentation. Our results were 292 
very promising and encouraging, especially by using pre-trained RESNET-50 as the backbone with 293 
the loss function adapted to our task, it helped us to addresses the vanishing gradient problem, 294 
increasing the segmentation quality and speed. 295 

However, there are further developments in future works to improve the model that performs 296 

cell instance segmentation, to distinguish adjacent cells, and to identify individual cells.   297 
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