Anti-fungal activity of five studied plant extracts compared with propolis and their effect on aflatoxigenic production and expression of aflatoxin biosynthesis genes of studied Aspergillus flavus isolates

Authors

  • Gamal F. H. Abdel-Wahab High Institute of Public Health, Alexandria University, Microbiology Department, Alexandria, Egypt.
  • Monga I. Mossa Botany and microbiology department, Faculty of Science, Arish University, Arish 45511, North Sinai, Egypt.
  • Sherin Sobhy Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box 21934, Alexandria, Egypt.
  • Fatma H. Galal Department of Biology, Jouf University, AlJouf, Sakaka, Saudi Arabia. and Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.
  • AlaaEddeen M. Seufi Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.
  • Mohammad M. El-Metwally Botany and Microbiology Department, Damanhour University, Damanhour, Egypt.

Keywords:

Aspergillus flavus, aflatoxins regulation, plant extracts, A. majus, C. sinensis, T. alexandrinum, H. lupulus, L. usitatissimum, propolis

Abstract

This study was designed to evaluate fungal activity of five plant extracts namely; Ammi majus, Camellia sinensis, Trifolium alexandrinum, Humulus lupulus, and Linum usitatissimum (seeds), and propolis against an aflatoxin-producing Aspergillis flavus isolate. Their ability to inhibit production of four aflatoxins (B1, B2, G1 and G2) was studied, too. Four isolates of Aspergillus flavus were isolated from infected wheat grain collected from local markets at Alexandria governorate, Egypt. Fungal isolates were molecularly identified as; A. flavus 1 (acc#: OR477304), A. flavus 2 (acc#: OR478624), A. flavus 3 (acc#: OR478625) and A. flavus 4 (acc#:  OR477305). Six concentrations of the five plant extracts and propolis were used (0.0, 0.01, 0.05, 0.1, 0.5 and 1 g/50 ml) to study their anti-fungal activity against A. flavus 3 (OR478625). All treatments produced significant reduction in the percentage of fungal biomass’s growth when compared to control. The highest reduction in fungal biomass by A. majus (50.8%) and T. alexandrinum (54.6%) appear at 0.01 and 0.5 g/50ml. For C. sinensis the highest reduction in growth biomass (60.6%) appear at 0.01 g/50ml. In contrast to H. lupulus and L. usitatissimum, the highest reduction in growth biomass appears at 1 g/50ml are 38.4% and 61.6% respectively. Propolis exhibited the highest reduction in fungal biomass (48.2%) at 0.5 g/50 ml. Production of AFs by A. flavus OR478625 in broth medium were significantly affected by plant extracts, in contrast to propolis. The plant extract of A. majus cause complete inhibition of the four types of AFs production (B1, B2, G1 and G2) at all studied concentrations. As for C. sinensis extract complete inhibition appeared for only three types of AFs (B2, G1 and G2) under all concentrations. In addition, H. lupulus extract caused complete inhibition for the four AFs at 0.5 and 1% concentrations. As for T. alexandrinum extract complete inhibition of the four AFs was achieved at 0.01 and 1%. Regarding L. usitatissimum extract AFG1 was inhibited at all concentrations. Propolis completely inhibited the four studied aflatoxins at 0.5 and 1 %. Quantity of studied secondary metabolites varies from one extract to others. Phenolics ranged from 121 to 322 mg/g, flavonoids from 50 to 85 mg/g, ascorbic acid from 10 to 36 mg/g, saponins from 17 to 36 mg/g and tannins from 11 to 35 mg/g, for studied plant extracts. Three methods were used for studding antioxidant activity. For FRP and DPPH methods the highest antioxidant activity appeared with A. majus (35.8±3 mg/g and 81±3%) respectively, but for PMA methods the highest antioxidant activity appeared with H. lupulus (30±2 mg/g). Meanwhile, propolis exhibited 30.8, 76.4 and 11.5 antioxidant capacity using FRP, DPPH and PMA methods, respectively. Additionally, treatment of A. flavus 3 with A. majus, showed remarkable variations in genes expression when compared to control. This study presented the antioxidant properties, antifungal capacity and inhibitory effect on aflatoxin production of the studied plant extracts and propolis, as well.

References

Lewis, L., Onsongo, M., Njapau, H., Schurz-Rogers, H., Luber, G., Kieszak, S., Nyamongo, J., Backer, L., Dahiye, A.M., Misore, A., DeCock, K., Rubin, C. (2005). Kenya Aflatoxicosis Investigation Group. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ Health Perspect., 113(12):1763-1767. doi: 10.1289/ehp.7998.

Iqbal, S.Z., Jinap, S., Pirouz, A.A., Ahmad, F.A.R. (2015). Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: A review. Trends in Food Science & Technology, 46(1): 110-119. https://doi.org/10.1016/j.tifs.2015.08.005.

Paterson, R.R., Lima, N. (2010). Toxicology of Mycotoxins. Molecular, Clinical and Environmental Toxicology, 100: 31-63. http://dx.doi.org/10.1007/978-3-7643-8338-1_2.

Khalifa, E., Marwa, T.M., Monga, I.M., Piekutowska, M., Alsuhaibani, A.M., Basel, A.A., Sotohy, A.S., Soumya, G., Yosra, A.H., Mohamed, H., Ahmed, M.A. (2022). Diversity of Toxigenic Fungi in Livestock and Poultry Feedstuffs. Int. J. Environ. Res. Public Health, 19(7250): 1-16. DOI: 10.3390/ijerph19127250.

Sherif, S.H., Salama, E., Mosaad, A.A. (2009). Mycotoxins and child health: The need for health risk assessment. Int. J. Hygiene Environ. Health, 212: 347-368. 10.1016/j.ijheh.2008.08.002.

Ogodo, A., Ugbogu, O. (2016). Public Health Significance of Aflatoxin in Food Industry– A Review. European J. Clin. Biomed. Sci., 2: 51-58. 10.11648/j.ejcbs.20160205.14.

Olana, A. (2022). Aflatoxin producing fungi and its management: Review Article. J. Plant Pathol. Microbiol., 13(10): 1-6.

Magan, N., Aldred, D., Medina, A. (2012). Abstracts. Quality Assurance and Safety of Crops & Foods, 4: 145-145. https://doi.org/10.1111/j.1757-837X.2012.00152.x

Perrone, G., Ferrara, M., Medina, A., Pascale, M., Magan, N. (2020). Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms, 29;8(10):1496. doi: 10.3390/microorganisms8101496.

Payne, G.A., Brown, M.P. (1998). Genetics and physiology of aflatoxin biosynthesis. Annu. Rev. Phytopathol., 36: 329-362. 10.1146/annurev.phyto.36.1.329.

Khaneghah, A.M., Ismail, E.S., Susan, R., Yadolah, F. (2010). The Food processor’s guide to your facility’s pest control. J. Food Safety, 37(6): 1-7. https://doi.org/10.1111/jfs.12532.

Kwon-Chung, K.J., Sugui, J.A. (2013). Aspergillus fumigatus-what makes the species a ubiquitous human fungal pathogen? PLoS Pathol., 9(12):e1003743. doi: 10.1371/journal.ppat.1003743.

Paulussen, C., Hallsworth, J.E., Alvarez-Perez, S., Nierman, W.C., Hamil, P.G., Blain, D., Lievens, B. (2019). Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. 10(2): 296-322. doi: 10.1111/1751-7915.12367.

Shabeer, S., Asad, S., Jamal, A., Ali, A. (2022). Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins, 14(5): 307. https://doi.org/10.3390/toxins14050307.

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., Lightfoot, D.A. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel, Switzerland), 6(4): 42. https://doi.org/10.3390/plants6040042.

Youssef, N.H., Qari, S.H., Matar, S., Hamad, N.A., Dessoky, E.S., Elshaer, M.M., Sobhy, S., Abdelkhalek, A., Zakaria, H.M., Heflish, A.A. (2021). Licorice, Doum, and Banana Peel Extracts Inhibit Aspergillus flavus Growth and Suppress Metabolic Pathway of Aflatoxin B1 Production. Agronomy, 11: 1587. https://doi.org/10.3390/agronomy11081587.

Al-Hadhrami, R.M.S., Hossain, M.A. (2016). Evaluation of antioxidant, antimicrobial and cytotoxic activities of seed crude extracts of Ammi majus grown in Oman. Egy. J. Basic App. Sci., 3(4): 329-334. DOI: 10.1016/j.ejbas.2016.08.001.

Hossain, M.A., Al Touby, S. (2020). Ammi majus an Endemic Medicinal Plant: A Review of the Medicinal Uses, Pharmacological and Phytochemicals. Ann. Toxicol., 2(1). DOI: 10.36959/736/634.

Anaeigoudari, A., Safari, H., Khazdair, M.R. (2021). Effects of Nigella sativa, Camellia sinensis, and Allium sativum as Food Additives on Metabolic Disorders, a Literature Review. Front. Pharmacol., 12: 762182. https://doi.org/10.3389/fphar.2021.762182.

Dias, T.A., Duarte, C.L., Lima, C.F., Proença, M.F., Pereira-Wilson, C. (2013). Superior anticancer activity of halogenated chalcones and flavonols over the natural flavonol quercetin. Eur. J. Medic. Chem., 65: 500-510. https://doi.org/10.1016/j.ejmech.2013.04.064.

Thitimuta, S., Pithayanukul, P., Nithitanakool, S., Bavovada, R., Leanpolchareanchai, J., Saparpakorn, P. (2017). Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities. Molecules (Basel, Switzerland), 22(3): 401. https://doi.org/10.3390/molecules22030401.

Hodgson, J.M., Devine, A., Puddey, I.B., Chan, S.Y., Beilin, L.J., Prince, R.L. (2003). Tea Intake Is Inversely Related to Blood Pressure in Older Women. The J. Nut., 133(9): 2883-2886. https://doi.org/10.1093/jn/133.9.2883.

Al Disi, S.S., Anwer, M.A., Eid, A.H. (2016). Anti-hypertensive herbs and their mechanisms of action: Part . Fron. Pharmacol., 6:2015. https://doi.org/10.3389/fphar.2015.00323.

Huang, H.C., Lin, J.K. (2012). Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food and Function, 3(2): 170-177. https://doi.org/10.1039/c1fo10157a.

Liu, B., Mao, Q., Zhou, D., Luo, M., Gan, R., Li, H., Huang, S., Saimaiti, A., Shang, A., Li, H. (2021). Effects of Tea against Alcoholic Fatty Liver Disease by Modulating Gut Microbiota in Chronic Alcohol-Exposed Mice. Foods. 10(6): 1232. https://doi.org/10.3390/foods10061232.

Ning, J.-M., Ding, D., Song, Y.-S., Zhang, Z.-Z., Luo, X., Wan, X.-C. (2016). Chemical Constituents Analysis of white tea of Different Qualities and Different Storage Times. Eur. Food Res. Technol., 242(12): 2093-2104. 10.1007/s00217-016-2706-0.

Sabudak, T., Guler, N. (2009). Trifolium L.- Arevie on its phytochemical and pharmacological profile. Phytotherapy Research, 439-446. www.interscience.wiley.com. Doi: 10.1002/ptr.2709.

28. Bakheit, B.R. (2013). Egyptian Clover (Trifolium alexandrinum L.) Breeding in Egypt: A Review. Asian J. Crop Sci., 5: 325-337. doi: 10.3923/ajcs.2013.325.337.

Behiry, S.I., Hamad, N.A., Alotibi, F.O., Al-Askar, A.A., Arishi, A.A., Kenawy, A.M., Elsamra, I.A., Youssef, N.H., Elsharkawy, M.M., Abdelkhalek, A. (2022). Antifungal and Antiaflatoxigenic Activities of Different Plant Extracts against Aspergillus flavus. Sustainability, 14: 12908. https://doi.org/10.3390/su141912908.

Khan, A.V., Ahmed, Q.U., Shukla, I., Khan, A.A. (2012). Antibacterial activity of leaves extracts of Trifolium alexandrinum Linn. against pathogenic bacteria causing tropical diseases. Asian Pacific J. Trop. Biomed., 2(3): 189-194. https://doi.org/10.1016/S2221-1691(12)60040-9.

Sakeran, M.I., Zidan, N., Rehman, H., Aziz, A.T., Saggu, S. (2014). Abrogation by Trifolium alexandrinum root extract on hepatotoxicity induced by acetaminophen in rats. Redox Report: Communications In Free Radical Research, 19(1): 26-33. https://doi.org/10.1179/1351000213Y.0000000068.

Ali, H., Naseer, M., Sajad, M.A. (2012). Phytoremediation of heavy metals by Trifolium alexandrinum. Agris On-line Papers in Economics and Informatics, 2: 1459-1469. 10.6088/ijes.002020300031.

Khan, S., Khatoon, S. (2007). Ethnobotanical studies on some useful herbs of Haramosh and Bugrote Valleys in Gilgit, Northern Areas of Pakistan. Pak. J. Botany, 40(1): 43-58.

Keskin, M. (2022). Humulus lupulus L. (hops) based silver nanoparticles: synthesis, characterization and enzyme inhibition effects. Acta Sci. Pol. Hortorum Cultus, 21(4): 11-20. https://doi.org/10.24326/asphc.2022.4.2.

Korpelainen, H., Pietiläinen, M. (2021). Hop (Humulus lupulus L.): Traditional and Present Use, and Future Potential. Econ. Bot., 75: 302-322. https://doi.org/10.1007/s12231-021-09528-1.

Radadiya, K.V., Panara, K., Acharya, R. (2023). A comprehensive ethnopharmacological review on Linum usitatissimum Linn. (Atasi). Int. J. Botany Stu., 8(2): 47-54.

Hussien, Z.G., Aziz, R.A. (2021). Chemical Composition And Antibacterial Activity Of Linum usitatissimum L. (Flaxseed). Syst. Rev. Pharm., 12(2): 145-147. doi:10.31838/srp.2021.2.15.

Ouf, J.M., Ali, G.H., Hafez, S.M., Youssef, W., Mosa, A.M.M.A. (2023). Shelf life of chilled broiler which fed on mycotoxins contaminated ration. Egyp. J. Animal Health, 3(3): 204-214. https://ejah.journals.ekb.eg/.

Baqer, G.K., Madhi, K.S., Baqer, F.K., Baqer, L.K., Abbas, B.A. (2023). Antibacterial Activity and Phytochemical Screening of Linum usitatissimum L. on Bacteria Isolated from Wound Infections. Iran. J. War Public Health, 15(4): 347-352. 10.58209/ijwph.15.4.347.

Pascoal, P.M., Narciso, I.S., Pereira, N.M. (2014). What is sexual satisfaction? Thematic analysis of lay people's definitions. Journal of Sex Res., 51(1): 22-30. https://doi.org/10.1080/00224499.2013.815149.

Kurek-Górecka, A., Górecki, M., Rzepecka-Stojko, A., Balwierz, R., Stojko, J. (2020). Bee Products in Dermatology and Skin Care. Molecules, 25(3): 556. doi: 10.3390/molecules25030556.

Singh, V., Ali, M.N. (2016). Analysis of Differential Gene Expression under Salinity through Differential Display Reverse Transcription Polymerase Chain Reaction (DDRTPCR) Technique: A Review. Electronic J Biol., 12:4.

Klich, M.A. (2002). Identification of Common Aspergillus Species. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands, P: 124.

Samson, R.A., Noonim, P., Meijer, M., Houbraken, J., Frisvad, J.C., Varga, J. (2007). Diagnostic tools to identify black aspergilli. Studies in Mycology, 59, 129-145. https://doi.org/10.3114/sim.2007.59.13.

Eppley, R.W. (1968). An Incubation Method For Estimating The Carbon Content Of Phytoplankton In Natural Samples. Limnology and Oceanography, 13. doi: 10.4319/lo.1968.13.4.0574.

Umesha, S., Manukumar, H.M., Raghava, S. (2016). A rapid method for isolation of genomic DNA from food-borne fungal pathogens. 3 Biotech., 6(2): 123. doi: 10.1007/s13205-016-0436-4.

White, T.J., Bruns, T.D., Lee, S.B., Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. Book: PCR - Protocols and Applications - A Laboratory Manual, Publisher: Academic Press.

Tamura, K., Stecher, G., Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7): 3022-3027. https://doi.org/10.1093/molbev/msab120.

Mossa, M.I. (2021). Antifungal Effect of Thymus vulgaris methanolic extract on growth of aflatoxins producing Aspergillus parasiticus. Egypt. J. Bot., 61(2): 349-359. DOI: 10.21608/ejbo.2019.12540.1311.

Yousef, H., Metwaly, H.A., Hassanin, M.M.H. (2022). effect of plant extracts on suppression of Aspergillus flavus growth and Aflatoxin productionin Peanuts. Egypt. J. Phytopathol., 50(2): 25-32. DOI: 10.21608/ejp.2022.150154.1064.

El-Sakhawy, M. (2023). Propolis harvesting and extraction. Egypt. J. Chem., 66(1): 313-321.

Gniewose, M., Pobiega, K., Olbrys, N., Krasniewska, K., Synoiec, A. (2023). The effect of ethanol propolis extracts on inhibition of growth of Fusarium solani on hen eggs. J. App. Sci., 13(1): 315. https://doi.org/10.3390/app13010315.

Sobhy, S., Allah, K., Kassem, E., Hafez, E., Sewelam, N. (2019). Seed priming in natural weed extracts represents a promising practice for alleviating lead stress toxicity. Egypt. J. Exp. Biol., 15: 453.

(PDF) Antioxidant activity, antibacterial behavior, and anticancer impact of Egyptian propolis. Available from: https://www.researchgate.net/publication/388840454_Antioxidant_activity_antibacterial_behavior_and_anticancer_impact_of_Egyptian_propolis.

Hiai, S., Oura, H., Hamanaka, H., Odaka, Y. (1975). A color reaction of panaxadiol with vanillin and sulfuric acid. Planta Med., 28(6): 131-138.

Broadhurst, R., Jones, W.T. (1978). Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric., 29(9): 788-794. DOI: 10.1002/jsfa.2740290908.

Chang, C.-C., Yang, M.-H., Wen, H.-M., Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Analy., 10(3), Article 3. Available at: https://doi.org/10.38212/2224-6614.2748.

Jindal, K.K., Singh, R.N. (1975). Phenolic Content in Male and Female Carica papaya: A Possible Physiological Marker for Sex Identification of Vegetative Seedlings. Physiologia Plantarum, 33: 104-107. https://doi.org/10.1111/j.1399-3054.1975.tb03774.x.

Oser, B. (1979). Hawk’s Physiological Chemistry, 15th ed., McGrow Hill Publish. Company, New York.

Lee, Y.P., Takahashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Biochem., 14(1): 71-77. https://doi.org/10.1016/0003-2697(66)90057-1.

Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. Japanese J. Nut, 44(1986): 307.

Jayaprakasha, G.K., Singh, R.P., Sakariah, K.K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem., 73(3): 285-290.‏

Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity, LWT - Food Sci. Technol., 28(1): 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5.

Bondet, V., Brand-Williams, W., Berset, C. (1997). Kinetics and Mechanisms of Antioxidant Activity using the DPPH. Free Radical Method, LWT- Food Sci. Technol., 30(6):609-615. https://doi.org/10.1006/fstl.1997.0240.

Chen, X.Q., Bonnefoi, H., Pelte, M.-F., Lyautey, J., Lederrey, C., Movarekhi, S., Schaeffer, P., Mulcahy, H.E., Meyer, P., Stroun, M., Anker, P. (2000). Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin. Cancer Res., 6: 3823-3826.

Welsh, J., McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18(24): 7213-7218. https://doi.org/10.1093/nar/18.24.7213.

Wong, K., Mok, C., Welsh, J., McClelland, M., Tsao, S., Berkowitz, R. (1993). Identification of differentially expressed RNA in human ovarian-carcinoma cells by arbitrarily primed PCR fingerprinting of total RNAs. Int. J. Oncol., 3(1): 13-17. doi: 10.3892/ijo.3.1.13.

Nelson, J.B., Chan-Tack, K., Hedican, S.P., Magnuson, S.R., Opgenorth, T.J., Bova, G.S., Simons, J.W. (1996). Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res., 56(4): 663-668. PMID: 8630991.

Sserumaga, J.P., Ortega-Beltran, A., Wagacha, J.M., Mutegi, C.K., Bandyopadhyay, R. (2020). Aflatoxin-producing fungi associated with pre-harvest maize contamination in Uganda. Int. J. Food Microbiol., 16(313): 108376. doi: 10.1016/j.ijfoodmicro.2019.108376.

Frisvad, J.C., Hubka, V., Ezekiel, C.N., Hong, S.B., Nováková, A., Chen, A.J., Arzanlou, M., Larsen, T.O., Sklenář, F., Mahakarnchanakul, W., Samson, R.A., Houbraken, J. (2019). Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Studies in Mycol., 93: 1-63. doi: 10.1016/j.simyco.2018.06.001.

Saad, S.M., Ramadan, M.S., Reham, A.A.A., Khalifa, E.A.A. (2015). The using of essential oils in improving mycological status of some meat products. Benha Vet. Med. J., 29(1): 85‐96.

El-Nagerabi, S., Al-Maqbali, M., Alabri, S., Elshafie, A. (2021). An in vitro Antifungal and Antiaflatoxigenic Properties of Commiphora myrrha and Prunus mahaleb. J. Food Res., 10(6): 10-21. DOI:10.5539/jfr.v10n6p10.

Sobhy, M., Ali, S.S., Cui, H., Lin, L., El-Sapagh, S. (2023). Exploring the potential of 1,8-cineole from cardamom oil against food-borne pathogens: Antibacterial mechanisms and its application in meat preservation. Microbial Pathogenesis, 184(2023): 106375. https://doi.org/10.1016/j.micpath.2023.106375.

Mahmoud, A.L. (1999). Inhibition of growth and aflatoxin biosynthesis of Aspergillus flavus by extracts of some Egyptian plants. Let. App. Microbiol., 29(5): 334-336. https://doi.org/10.1046/j.1472-765x.1999.00636.x.

Mossa, M.I., Abdul Wahid, O.A. (2016). Effect of Thymus vulgaris, Salvia and Artemisia extracts against filamentous fungi on North Sinai. Egypt J. Bot., Special Issue For 6th International Conference on Biotechnology and its Applications in Botany and Microbiology, 11-12 May, 2016, Menoufia Univ., P: 301-316.

Abdel-Wahab, M., Mostafa, M., Sabry, M., el-Farrash, M., Yousef, T. (2008). Aflatoxins as a risk factor for hepatocellular carcinoma in Egypt, Mansoura Gastroenterology Center study. Hepatogastroenterology, 55(86-87): 1754-1759. PMID: 19102385.

Qin, G.Z. (1991). Effects of green tea extract on the development of aflatoxin B1-induced precancerous enzyme-altered hepatocellular foci in rats. Chinese J. Preventive Med., 25(6): 332-334.

Abeer, E-A., Monira, A.-O., Saleh, A.-S., Mahmoud, M., Kasi, M. (2012). Prevention of aflatoxin contamination of maize by Aspergillus flavus through aqueous plant extracts in Saudi Arabia. Afr. J. Microbiol. Res., 6: 6931-6935. 10.5897/AJMR12.1455.

Adjovi, Y.C.S., Koulony, R., Atindehou, M.M., Ahehehinnou, H.U., Dadavodou, J., Sanni, A. (1919). Laurus nobilis L.a ntural alternative against Aspergillus flavus and aflatoxins. Int. J. Dev. Res., 9(05): 27692-27697.

Alizadeh-Salteh, S. (2015). Growth Inhibition of Aspergillus flavus Isolated from Pistachio by Secondary Metabolites. J. Nuts, 6(2): 85-94.

Kim, H.-M., Kwon, H., Kim, K., Lee, S.-E. (2018). Antifungal and Antiaflatoxigenic Activities of 1,8-Cineole and t-Cinnamaldehyde on Aspergillus flavus. App. Sci., 8(9): 1655. https://doi.org/10.3390/app8091655.

Abdelaziz, A.M., El-Wakil, D.A., Attia, M.S., Ali, O.M., AbdElgawad, H., Hashem, A.H. (2022). Inhibition of Aspergillus flavus Growth and Aflatoxin Production in Zea mays L. Using Endophytic Aspergillus fumigatus. J. Fungi (Basel, Switzerland), 8(5): 482. https://doi.org/10.3390/jof8050482.

Dubey, R.C., Dwivedi, R.S. (1991). Fungitoxic properties of some plant extracts against vegetative growth and sclerotial viability of Macrophomina phaseolina. Ind. Phytopathol., 44: 411-413.

Anjum, S.I., Ullah, A., Khan, K.A., Attaullah, M., Khan, H., Ali, H., Bashir, M.A., Tahir, M., Ansari, M.J., Ghramh, H.A., Adgaba, N., Dash, C.K. (2019). Composition and functional properties of propolis (bee glue): A review. Saudi J. Biologic. Sci., 26(7): 1695-1703. https://doi.org/10.1016/j.sjbs.2018.08.013.

Lotfy, M. (2006). Biological Activity of Bee Propolis in Health and Disease. Asian Pacific J. Cancer Prevention, 7: 22-31.

Pepeljnjak, S., Maysinger, D., Jalsenjak, I. (1982). Effect of propolis extract on some fungi. Scientia Pharmacentica, 50: 165-167.

Fahmy, F.G., Omar, M.O.M. (1988). Effect of Propolis extracts on certain potato viruses., Fourth International Congress on Agriculture in Tropical Climates, Cairo, Egypt, 6-10, November.

Fahmy, F.G., Omar, M.O.M. (1989). Potential use of Propolis to control white rot disease of onion. Assiut J. Agric. Sci., 20(1): 265-275.

Bellik, Y., Boukraa, L. (2012). Beneficial effects of propolis on human health and chronice diseases, The antimicrobial properties of propolis, Chap x, book, Nova Science Publishers, Inc., P: 1-17.

Saeed, F.A., Mohamed, S.H. (1992). The influence of propolis extract on soybean and sunflower wilt disease. Assiut J. Agric. Sci., 23(2): 179-190.

Abdul Salam, K.S., Mohamed, M.I. (1995). Effect of propolis on some Fusarium spp. Egypt J. Phytopathol., 21(2): 149-155.

Ghaly, M.F., Ezzat, S.M., Sarhan, M.M. (1998). Use of propolis and ultragriseofulvin to inhibit aflatoxigenic fungi. Folia Microbiologica, 43(2): 156-160. https://doi.org/10.1007/BF02816502.

Price, K.R., Johnson, I.T., Fenwick, G.R. (1987). The chemistry and biological significance of saponins in foods and feedstuffs. Crit. Rev. Food Sci. Nutr., 26: 27-135. doi: 10.1080/10408398709527461.

Gallardo, F., Boethel, D.J. (1990). Effects of the Allelochemical, α-tomatine, on the Soybean Looper (Lepidoptera: Noctuidae). J. Entomol. Sci., 25(3): 376-382. https://www.doi.org/10.18474/0749-8004-25.3.376

Kehrer, J.P. (1993). Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol., 23(1): 21-48. https://doi.org/10.3109/10408449309104073.

Ghafar, M.F., Prasad, K.N., Weng, K.K., Ismail, A. (2010). Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. Afr. J. Biotechnol., 9(3).‏

Ardestani, A., Yazdanparast, R. (2007). Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem., 104(1): 21-29.‏

Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18(22): 6531-6535. https://doi.org/10.1093/nar/18.22.6531.

Caceres, I., Khoury, A.A., Khoury, R.E., Lorber, S., Oswald, I.P., Khoury, A.E., Atoui, A., Puel, O., Bailly, J.D. (2020). Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins, 12(3): 150. https://doi.org/10.3390/toxins12030150.

Brown, S.A., Venkatesh, V. (2005). Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS quarterly: 399-426. https://doi.org/10.2307/25148690.

Yu, J. (2012). Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins, 4(11): 1024-1057. https://doi.org/10.3390/toxins4111024.

Downloads

Published

2025-05-19

How to Cite

Abdel-Wahab, G. ., Mossa, M. ., Sobhy, S. ., Galal, F. ., Seufi, A. ., & El-Metwally, M. . (2025). Anti-fungal activity of five studied plant extracts compared with propolis and their effect on aflatoxigenic production and expression of aflatoxin biosynthesis genes of studied Aspergillus flavus isolates. WAS Science Nature (WASSN) ISSN: 2766-7715, 1(1), 18–36. Retrieved from https://worldascience.com/journals/index.php/wassn/article/view/48

Issue

Section

Biology & Life Sciences