NOTE ON (A,m)-ISOMETRIC OPERATORS IN SEMI-HILBERTIAN SPACES

NOTE ON (A,m)-ISOMETRIC OPERATORS IN SEMI-HILBERTIAN SPACES

Authors

  • Sid Ahmed Ould Ahmed Mahmoud

Keywords:

Hilbert space; Hilbert space operator; isometric operators.

Abstract

Given a bounded 

References

Alger, J., & Stankus, M. (1995). m-isometric transformations of Hilbert space, I. Mathematics, 23,

Alger, J., & Stankus, M. (1996). m-Isometric Transformations of Hilbert Space, III. Journal of

Integral Equations and Operator Theory, 24(4), 379, 379-421.

Ando, T. (1972). Operators with a norm condition. Acta Sci. Math. Szeged, 33, 169-178.

Arias, M. L., Corach, G., & Gonzalez, M. C. (2008). Partial isometries in semi-Hilbertian

spaces. Linear Algebra and its Applications, 428(7), 1460-1475.

Baklouti, H., Feki, K., & Ould Ahmed Mahmoud, S. A. (2018). Joint normality of operators in

semi-Hilbertian spaces. Linear and Multilinear Algebra, 68(4), 845-866.

Baklouti, H., Feki, K., & Ahmed, O. A. M. S. (2018). Joint numerical ranges of operators in

semi-Hilbertian spaces. Linear Algebra and its Applications, 555, 266-284.

Bayart, F. (2011). m‐isometries on Banach spaces. Mathematische Nachrichten, 284(17‐18),

-2147.

Bermúdez, T., Mendoza, C. D., & Martinón, A. (2012). Powers of m-isometries. Studia

Math, 208(3), 249-255.

Bermúdez, T., Martinon, A., & Noda, J. A. (2013). Products of m-isometries. Linear Algebra and its

Applications, 438(1), 80-86.

Botelho, F. (2010). On the existence of n-isometries on l p-spaces, Acta Sci. Math. Szeged, 76,(1-2),

–192.

Duggal, B. P. (2000). Tensor products of operators—strong stability and

p-hyponormality. Glasgow Mathematical Journal, 42(3), 371-381.

Duggal, B. P. (2012). Tensor product of n-isometries. Linear algebra and its applications, 437(1),

-318.

Duggal, B. P. (2012). Tensor product of n-isometries II. Functional Analysis, Approximation and

Computation, 4, 27-32.

Gonzalez, M.C. (2011). Operator norm inequalities in semi-Hilbertian spaces. Linear Algebra

and its Applications, 434, 370-378.

Hoffman, P., Mackey, M. & ´O Searc´oid, M. (2011). On the second parameter of an (m;

p)-isometry. Integral Equat. Oper. Th., 71, 389–405.

Hou, J.C. (1993). On the tensor products of operators. Acta Math. Sinica (N.S.), 9(2), 195 - 202.

Patel, S. M. (2002). 2-Isometric Operators. Glasnik Math., 37, 143–147.

Sid’Ahmed, O.A.M. & Saddi, A. (2012). A-m-Isometric operators in semi-Hilbertian spaces.

Linear Algebra and its Applications, 436,3930-3942.

Sid Ahmed, O.A.M. (2010). m-isometric operators on Banach spaces. Asian-European J. Math., 3,

–19.

Richter, S. A. (1991). Representation theorem for cyclic analytic two-isometries. Trans. Amer.

Math. Soc., 328, 325-349.

Shimorin, S. M. (2001). Wold-type decompositions and wandering subspaces for operators

close to isometries. J. Reine Angew. Math., 531, 147-189.

Downloads

Published

2021-06-06

How to Cite

Mahmoud, S. A. O. A. . (2021). NOTE ON (A,m)-ISOMETRIC OPERATORS IN SEMI-HILBERTIAN SPACES: NOTE ON (A,m)-ISOMETRIC OPERATORS IN SEMI-HILBERTIAN SPACES. WAS Science Nature (WASSN) ISSN: 2766-7715, 1(1). Retrieved from http://worldascience.com/journals/index.php/wassn/article/view/19

Issue

Section

Computer Science & Mathematics